首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
According to current views, peroxisomal beta-oxidation is organized as two parallel pathways: the classical pathway that is responsible for the degradation of straight chain fatty acids and a more recently identified pathway that degrades branched chain fatty acids and bile acid intermediates. Multifunctional protein-2 (MFP-2), also called d-bifunctional protein, catalyzes the second (hydration) and third (dehydrogenation) reactions of the latter pathway. In order to further clarify the physiological role of this enzyme in the degradation of fatty carboxylates, MFP-2 knockout mice were generated. MFP-2 deficiency caused a severe growth retardation during the first weeks of life, resulting in the premature death of one-third of the MFP-2(-/-) mice. Furthermore, MFP-2-deficient mice accumulated VLCFA in brain and liver phospholipids, immature C(27) bile acids in bile, and, after supplementation with phytol, pristanic and phytanic acid in liver triacylglycerols. These changes correlated with a severe impairment of peroxisomal beta-oxidation of very long straight chain fatty acids (C(24)), 2-methyl-branched chain fatty acids, and the bile acid intermediate trihydroxycoprostanic acid in fibroblast cultures or liver homogenates derived from the MFP-2 knockout mice. In contrast, peroxisomal beta-oxidation of long straight chain fatty acids (C(16)) was enhanced in liver tissue from MFP-2(-/-) mice, due to the up-regulation of the enzymes of the classical peroxisomal beta-oxidation pathway. The present data indicate that MFP-2 is not only essential for the degradation of 2-methyl-branched fatty acids and the bile acid intermediates di- and trihydroxycoprostanic acid but also for the breakdown of very long chain fatty acids.  相似文献   

2.
The conjugate pattern of biliary [14C]bile acids was investigated in isolated perfused rat livers, which were infused with either [24-14C]cholic acid or [24-14C]chenodeoxycholic acid (40 mumol/h) together with or without taurine or cysteine (80 mumol/h). [14C]Bile acids were chromatographed on a thin-layer plate and the distribution of radioactivity on the plate was measured by radioscanning. The biliary excretion of [14C]bile acids was greater in the infusion with [14C]cholic acid than in the infusion with [14C]chenodeoxycholic acid. Biliary unconjugated [14C]bile acids amounted to about 50% of the total after the infusion with [14C]cholic acid, while only about 10% with [14C]chenodeoxycholic acid. In the initial period of infusion, biliary conjugated [14C]bile acids consisted mostly of the taurine conjugate, which decreased with time and the glycine conjugate increased complementarily. When taurine was simultaneously infused, the decrease in the taurine conjugate was suppressed to some extent. Cysteine infused in place of taurine had a similar influence but was less effective than taurine. The taurine content of liver after the infusion with either of the [14C]bile acids decreased greatly compared with that before the infusion, even when taurine or cysteine was infused simultaneously. The glycine content also decreased after the infusion, but the decrease in glycine was smaller than that in taurine. The results suggest that the conjugate pattern of biliary bile acids in rats depends mainly on the amount of taurine which is supplied to hepatic cells either exogenously from plasma or endogenously within themselves.  相似文献   

3.
A subgroup of peroxisomal disorders, peroxisome biogenesis defects (PBD), can be differentiated by elevated levels of C(27) bile acids in plasma and bile. Patients with peroxisomal disorders, who lack the ability to chain-shorten the C(27) bile acid intermediates into C(24) bile acids, show elevated levels of C(27) bile acids, notably 3 alpha,7 alpha-dihydroxy-5 beta-cholest-26-oic acid and 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestan-26-oic acid. C(27) bile acids are normally estimated against other bile acid standards, by time-consuming gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry methods, in plasma (minimum of 50 microl). In this article we describe the quantitation of unconjugated di- and trihydroxy C(27) bile acids in 5-microl plasma samples and 3-mm blood spots, using deuterium-labeled internal standards. The synthesis of (2)H(3)-labeled di- and trihydroxycoprostanic acids is described. The sample preparation and analysis by electrospray tandem mass spectrometry (ES-MS/MS) takes less than 1 h and features dimethylaminoethyl ester derivatives. The levels of the di- and trihydroxy bile acids are significantly higher in PBD patients than in age-matched control subjects for both plasma and blood spots collected at birth (some stored for up to 18 years). Excellent correlation is observed between the C(26:0)/C(22:0) very long chain fatty acid (VLCFA) ratio and the levels of trihydroxy C(27) bile acids in plasma from PBD patients.The ES-MS/MS method can be used to rapidly screen for PBD patients in plasma samples with elevated C(26:0)/C(22:0) VLCFA ratios and in archived collections of neonatal blood spots. - Johnson, D. W., H. J. ten Brink, R. C. Schuit, and C. Jakobs. Rapid and quantitative analysis of unconjugated C(27) bile acids in plasma and blood samples by tandem mass spectrometry. J. Lipid Res. 2001. 42: 9;-16.  相似文献   

4.
The nature of two novel C27 bile acids present as the taurine conjugates in urine from a patient with Zellweger's syndrome was studied. Bile acids conjugated with taurine were isolated from unconjugated and glycine-conjugated bile acids by means of ion-exchange chromatography. After alkaline hydrolysis of the taurine conjugates, the hydrolysate was acidified and extracted with ether; the extract was again subjected to ion-exchange chromatography to separate neutral from acidic compounds. The neutral fraction, which consisted mainly of two steroidal lactones, was treated with lithium aluminum hydride, and the reduction products were identified as (22R)-5 beta-cholestane-3 alpha,7 alpha,12 alpha,22,26-pentol and (23R)-5 beta-cholestane-3 alpha,7 alpha,12 alpha,23,26-pentol by direct comparison of their gas-liquid chromatographic behaviors and mass spectral data with those of chemically synthesized authentic samples. Thus, the chemical structure of two native bile acids present in urine from a patient with Zellweger's syndrome should be formulated as (22R)-3 alpha,7 alpha,12 alpha,22-tetrahydroxy-5 beta-cholestanoic acid and (23R)-3 alpha,7 alpha,12 alpha,12 alpha,23-tetrahydroxy-5 beta-cholestanoic acid, respectively.  相似文献   

5.
Hagey LR  Iida T  Ogawa S  Adachi Y  Une M  Mushiake K  Maekawa M  Shimada M  Mano N  Hofmann AF 《Steroids》2011,76(10-11):1126-1135
Three C(27) bile acids were found to be major biliary bile acids in the capuchinbird (Perissocephalus tricolor) and bare-throated bellbird (Procnias nudicollis), both members of the Cotingidae family of the order Passeriformes. The individual bile acids were isolated by preparative RP-HPLC, and their structures were established by RP-HPLC, LC/ESI-MS/MS and NMR as well as by a comparison of their chromatographic properties with those of authentic reference standards of their 12α-hydroxy derivatives. The most abundant bile acid present in the capuchinbird bile was the taurine conjugate of C(27) (24R,25R)-3α,7α,24-trihydroxy-5β-cholestan-27-oic acid, a diastereomer not previously identified as a natural bile acid. The four diastereomers of taurine-conjugated (24ξ,25ξ)-3α,7α,24-trihydroxy-5β-cholestan-27-oic acid could be distinguished by NMR and were resolved by RP-HPLC. The RRT of the diastereomers (with taurocholic acid as 1.0) were found to be increased in the following order: (24R,25R)<(24S,25R)<(24S,25S)<(24R,25S). Two epimers (25R and 25S) of C(27) 3α,7α-dihydroxy-5β-cholestan-27-oic acid were also present (as the taurine conjugates) in both bird species. Epimers of the two compounds could be distinguished by their NMR spectra and resolved by RP-HPLC with the (25S)-epimer eluting before the (25R)-epimer. Characterization of the taurine-conjugated (24R,25R)-3α,7α,24-trihydroxy-5β-cholestan-27-oic acid and two epimers (25R and 25S) of 3α,7α-dihydroxy-5β-cholestan-27-oic acid should facilitate their detection in peroxisomal disease and inborn errors of bile acid biosynthesis.  相似文献   

6.
Peroxisomal beta-oxidation is an essential step in bile acid synthesis, since it is required for shortening of C27-bile acid intermediates to produce mature C24-bile acids. D-Bifunctional protein (DBP) is responsible for the second and third step of this beta-oxidation process. However, both patients and mice with a DBP deficiency still produce C24-bile acids, although C27-intermediates accumulate. An alternative pathway for bile acid biosynthesis involving the peroxisomal L-bifunctional protein (LBP) has been proposed. We investigated the role of LBP and DBP in bile acid synthesis by analyzing bile acids in bile, liver, and plasma from LBP, DBP, and LBP:DBP double knock-out mice. Bile acid biosynthesis, estimated by the ratio of C27/C24-bile acids, was more severely affected in double knock-out mice as compared with DBP-/- mice but was normal in LBP-/- mice. Unexpectedly, trihydroxycholestanoyl-CoA oxidase was inactive in double knock-out mice due to a peroxisomal import defect, preventing us from drawing any firm conclusion about the potential role of LBP in an alternative bile acid biosynthesis pathway. Interestingly, the immature C27-bile acids in DBP and double knock-out mice remained unconjugated in juvenile mice, whereas they occurred as taurine conjugates after weaning, probably contributing to the minimal weight gain of the mice during the lactation period. This correlated with a marked induction of bile acyl-CoA:amino acid N-acyltransferase expression and enzyme activity between postnatal days 10 and 21, whereas the bile acyl-CoA synthetases increased gradually with age. The nuclear receptors hepatocyte nuclear factor-4alpha, farnesoid X receptor, and peroxisome proliferator receptor alpha did not appear to be involved in the up-regulation of the transferase.  相似文献   

7.
Bile acid CoA:amino acid N-acyltransferase (BAT) is responsible for the amidation of bile acids with the amino acids taurine and glycine. Rat liver BAT (rBAT) cDNA was isolated from a rat liver lambdaZAP cDNA library and expressed in Sf9 insect cells using a baculoviral vector. rBAT displayed 65% amino acid sequence homology with human BAT (hBAT) and 85% homology with mouse BAT (mBAT). Similar to hBAT, expressed rBAT was capable of forming both taurine and glycine conjugates with cholyl-CoA. mBAT, which is highly homologous to rBAT, forms only taurine conjugated bile acids (Falany, C. N., H. Fortinberry, E. H. Leiter, and S. Barnes. 1997. Cloning and expression of mouse liver bile acid CoA: Amino acid N-acyltransferase. J. Lipid Res. 38: 86-95). Immunoblot analysis of rat tissues detected rBAT only in rat liver cytosol following homogenization and ultracentrifugation. Subcellular localization of rBAT detected activity and immunoreactive protein in both cytosol and isolated peroxisomes. Rat bile acid CoA ligase (rBAL), the enzyme responsible for the formation of bile acid CoA esters, was detected only in rat liver microsomes. Treatment of rats with clofibrate, a known peroxisomal proliferator, significantly induced rBAT activity, message, and immunoreactive protein in rat liver. Peroxisomal membrane protein-70, a marker for peroxisomes, was also induced by clofibrate, whereas rBAL activity and protein amount were not affected. In summary, rBAT is capable of forming both taurine and glycine bile acid conjugates and the enzyme is localized primarily in peroxisomes in rat liver.  相似文献   

8.
1. The two steps in bile acid conjugation have been studied in subcellular fractions of liver from three species of fish; vermillion rockfish, canary rockfish and ling codfish. 2. The bile acid: coenzyme A (CoA) ligase activity in homogenates and isolated microsomes is undetectable due to indeterminate factors. 3. A purification scheme is presented which eliminates the interfering factors. The purified ligase was found to have a lower affinity for bile acids as compared to the mammalian form and to be present in much lower titer. 4. Since it appears to be the rate controlling enzyme in all species, it is expected that the rate of bile acid conjugation is much slower in non-mammalian liver as compared to mammalian liver. 5. The bile acid-CoA:taurine N-acyltransferase was found to exist as a dimer of molecular weight 100,000, in contrast to the monomeric mammalian forms. 6. The only major kinetic difference is that the fish liver forms have rates of glycine conjugation which are only 1-2% of the rate with taurine, in part due to a very high Km for glycine.  相似文献   

9.
A reversed phase high pressure liquid chromatography (HPLC) system capable of simultaneously separating four lithocholyl species (sulfated and unsulfated forms of lithocholylglycine and lithocholyltaurine) as well as the eight other major conjugated bile acids present in human bile is described. The system uses a C18 octadecylsilane column and isocratic elution with methanol phosphate buffer, pH 5.35. Relative bile acid concentration is determined by absorbance at 200 nm. Retention times relative to chenodeoxycholylglycine are reported for the four lithocholic acid forms, the glycine and taurine amidate of the four major bile acids present in human bile (cholic, chenodeoxycholic, ursodeoxycholic, and deoxycholic), and for their corresponding unconjugated forms. Retention times are also reported for the glycine and taurine amidates as well as the unconjugated form of the C23 norderivatives of these bile acids. Maximal absorbance of bile acid amidates is at 200 nm and is very similar for the (unsulfated) glycine and taurine amidates. Sulfated lithocholyl amidates exhibit molar absorptivities at 200 nm which are 1.4 times greater than that of non-sulfated lithocholyl amidates. Unconjugated bile acid absorbance at 200 nm or 210 nm is 20 to 30 times less than that of corresponding peptide conjugates. The method has been applied to samples of gallbladder bile obtained from 14 healthy subjects to define the pattern of conjugated bile acids present in human bile.  相似文献   

10.
In a previous paper, we showed that bile acid derivatives inhibit capsule formation as well as taurine biosynthesis in a taurine+ (Tau+) encapsulated strain of Staphylococcus aureus. In the present study, binding of [14C]cholic acid [( 14C]CA) and [14C]taurocholic acid [( 14C]TA) to the staphylococcal polysaccharide antigen (SPA) of the capsular fraction was examined. The bile acids were found to bind with SPA via taurine of the Tau+ cells. [14C]CA bound with the SPA fraction of the Tau+ strain within 10-30 min, whereas 60-120 min was required in the binding of [14C]TA. Various bile acids competed with cholic acid binding to Tau+ cells which was shown by the inhibition of binding with cholic acid or taurocholic acid but not with glycholic acid. Binding of bile acid derivatives to a Tau- encapsulated mutant or to capsular material from this mutant was not observed.  相似文献   

11.
The concentrations of 3 beta-hydroxy-5-cholestenoic acid, 3 beta,7 alpha-dihydroxy-5-cholestenoic acid, and 7 alpha-hydroxy-3-oxo-4-cholestenoic acid were determined in plasma from patients with different liver diseases and compared with those of unconjugated and conjugated C24 bile acids. The levels of the cholestenoic acids were similar in patients with extrahepatic cholestasis and in controls (median concentration 153 and 162 ng/ml, respectively), whereas significantly elevated levels were found in plasma from patients with primary biliary cirrhosis (median concentration 298 ng/ml) and alcoholic liver cirrhosis (median concentration 262 ng/ml). As expected, conjugated C24 bile acids were elevated in most patients whereas the corresponding unconjugated compounds were low in cholestasis and elevated in alcoholic liver cirrhosis. The levels of the individual C27 acids were usually positively correlated to each other and also to the levels of conjugated C24 bile acids in plasma from patients with liver cirrhosis. In contrast, there was no correlation between the levels of C27 acids and conjugated bile acids in patients with extrahepatic cholestasis. The levels of unconjugated C24 bile acids were not correlated to C27 acids or conjugated bile acids in any of the groups. The results indicate that there is a close metabolic relationship between the individual C27 acids, that they do not participate in an enterohepatic circulation, and that the liver is important for their elimination/metabolism.  相似文献   

12.
Fatty acyl-CoAs as well as the CoA esters of the bile acid intermediates di- and trihydroxycoprostanic acids are beta-oxidized in peroxisomes. The first reaction of peroxisomal beta-oxidation is catalyzed by acyl-CoA oxidase. We recently described the presence of two fatty acyl-CoA oxidases plus a trihydroxycoprostanoyl-CoA oxidase in rat liver peroxisomes (Schepers, L., P. P. Van Veldhoven, M. Casteels, H. J. Eyssen, and G. P. Mannaerts. 1990. J. Biol. Chem. 265: 5242-5246). We have now developed methods for the measurement of palmitoyl-CoA oxidase and trihydroxycoprostanoyl-CoA oxidase in human liver. The activities were measured in livers from controls and from three patients with peroxisomopathies. In addition, the oxidase activities were partially purified from control livers by ammonium sulfate fractionation and heat treatment, and the partially purified enzyme preparation was subjected to chromatofocusing, hydroxylapatite chromatography, and gel filtration. In earlier experiments this allowed for the separation of the three rat liver oxidases. The results show that human liver, as rat liver, contains a separate trihydroxycoprostanoyl-CoA oxidase. In contrast to the situation in rat liver, no conclusive evidence was obtained for the presence of two fatty acyl-CoA oxidases in human liver. Our results explain why bile acid metabolism is normal in acyl-CoA oxidase deficiency, despite a severely disturbed peroxisomal fatty acid oxidation and perhaps also why, in a number of other cases of peroxisomopathy, di- and trihydroxycoprostanic acids are excreted despite a normal peroxisomal fatty acid metabolism.  相似文献   

13.
Biliary excretion and biotransformation of tracer doses of [14C]lithocholic acid and its sulfate and glucuronide intravenously injected into bile-drainaged rats were compared. Biliary excretion efficiency was in the order of unconjugate sulfate glucuronide and all conjugates were completely excreted into bile within 60 min after injection. Only tracer doses of radioactivity were found in the liver and urine. About 90% of radiolabeled bile acids in bile were conjugated with taurine immediately after injection of lithocholic acid, whereas lithocholic acid-glucuronide was only partly conjugated with taurine all the time (less than 6%) and excreted into bile mainly as native compound. In the first 10 min, 66% of lithocholic acid-sulfate was conjugated with taurine and it gradually proceeded up to 87%. Hydroxylation at C-6 and C-7 positions of lithocholic acid proceeded time-dependently up to 45%. No hydroxylation was observed with lithocholic acid-sulfate or glucuronide. Differences of biliary excretion rate of these conjugates may be one of the reasons for the delayed decrease of sulfated and glucuronidated bile acids in serum after bile drainage to patients with obstructive jaundice of during the recovery of acute hepatitis than non-esterified bile acids.  相似文献   

14.
An in vitro study of bile acid-CoA:amino acid N-acyltransferase activity of rat liver was undertaken in order to determine whether separate amino acid-specific enzymes catalyzed the formation of glycine and taurine conjugates of bile acids as postulated by others. Polyacrylamide gel electrophoresis of 200-fold purified enzyme localized the glycine- and taurine-dependent activities to a single band. Both activities were optimal at pH 7.8 and showed similar loss of activity at pH 6.0, pH 9.0, in the presence of 5,5'-dithiobis(2-nitrobenzoic acid), and at temperatures exceeding 50 degrees. With the purified fraction, Km for glycine was 31 mM and Km for taurine was 0.8 mM. Km for several bile acid-CoA substrates was approximately 20 micron and independent of the amino acid acceptor. Only amino acids with terminal alpha- or beta-amino groups were active as acyl acceptors. Acyl donors were limited to bile acid-CoA derivatives. The data support the conclusion that the rat has a single bile acid-CoA:amino acid N-acyltransferase. The substrate kinetics are consistent with previous observations that taurine conjugates predominate in rat bile at normal hepatocellular concentrations of glycine and taurine.  相似文献   

15.
These enzymes play important roles in the biosynthesis of bile acids. They are cholesterol 7alpha-hydroxylase (CYP7A1), the rate limiting enzyme in the classic pathway, sterol 12alpha-hydroxylase (CYP8B1), the key enzyme for synthesis of cholic acid (CA), and sterol 27-hydroxylase (CYP27), the initial enzyme in the alternative pathway. In the present study, the susceptibility of these three enzymes to dietary cholesterol and cholate, and the cholesterol lowering effect of taurine were determined in male C57BL/6 mice and Wistar rats. Both mice and rats were divided into 6 groups: control group (N), high cholesterol diet group (C), high cholesterol and cholate diet group (CB), and their 1% taurine-supplemented groups (NT, CT, CBT, respectively). After animals were fed with the respective diets for one week, the mRNA levels of CYP7A1 increased in the C-group compared with those of the N-group, and decreased in the CB-group compared with those of the C-group in both mice and rats. But the extent of decrease is different between the two species. CYP8B1 was also markedly repressed by cholate in mice, but not in rats. These results are consistent with the changes in serum and liver cholesterol concentrations. Taurine significantly increased CYP7A1 mRNA levels in the CBT-group compared with the CB-group in both animal models, with a subsequent decrease in serum and liver cholesterol levels and increase in fecal bile acid excretion. Up-regulated CYP8B1 was also observed after taurine supplementation in the CBT-group in mice. No increase in CYP7A1 was produced by taurine in the CT-group compared with that of the C-group in mice, although the changes of serum and liver cholesterol and fecal bile acids indicated taurine showed an efficient cholesterol lowering effect. In addition, CYP27 was induced in both C- and CB-groups of rats but not of mice, and no changes were produced by taurine. The overall results suggest that there are differences between mice and rats in susceptibility of the three enzymes to dietary cholesterol and cholate, and taurine induced CYP7A1 to produce its cholesterol-lowering effect only in the presence of cholate in the cholesterol diet.  相似文献   

16.
K Kimura  M Ogura 《Steroids》1988,51(3-4):337-348
After [24-14C]delta 6-lithocholic acid was injected into the cecum of rats, [14C]lithocholic acid was identified as a metabolite in feces. When the labeled delta 6-bile acid was injected intraperitoneally into bile-fistula rats, radioactivity excreted in bile was contained most abundantly in the taurine-conjugated fraction of bile acids. In the fraction, taurine conjugate of [14C]delta 6-lithocholic acid but of neither [14C]lithocholic acid nor other bile acids was found. The results showed that [24-14C]delta 6-lithocholic acid was reduced to [14C]lithocholic acid by the intestinal flora but not by the liver, which, however, was capable of conjugating delta 6-lithocholic acid with taurine.  相似文献   

17.
Summary Alcohol was administered chronically to female Sprague Dawley rats in a nutritionally adequate totally liquid diet for 28 days. This resulted in hepatic steatosis and lipid peroxidation. Taurine, when co-administered with alcohol, reduced the hepatic steatosis and completely prevented lipid peroxidation. The protective properties of taurine in preventing fatty liver were also demonstrated histologically. Although alcohol was found not to affect the urinary excretion of taurine (a non-invasive marker of liver damage), levels of serum and liver taurine were markedly raised in animals receiving alcohol + taurine compared to animals given taurine alone. The ethanol-inducible form of cytochrome P-450 (CYP2E1) was significantly induced by alcohol; the activity was significantly lower than controls and barely detectable in animals fed the liquid alcohol diet containing taurine. In addition, alcohol significantly increased homocysteine excretion into urine throughout the 28 day period of ethanol administration; however, taurine did not prevent this increase. There was evidence of slight cholestasis in animals treated with alcohol and alcohol + taurine, as indicated by raised serum bile acids and alkaline phosphatase (ALP). The protective effects of taurine were attributed to the potential of bile acids, especially taurine conjugated bile acids (taurocholic acid) to inhibit the activity of some microsomal enzymes (CYP2E1). Thesein vivo findings demonstrate for the first time that hepatic steatosis and lipid peroxidation, occurring as a result of chronic alcohol consumption, can be ameliorated by administration of taurine to rats.  相似文献   

18.
1. Bile salts of the green turtle Chelonia mydas (L.) were analysed as completely as possible. 2. They consist of taurine conjugates of 3 alpha, 7 alpha, 12 alpha, 22 xi-tetrahydroxy-5 beta-cholestan-26-oic acid (tetrahydroxysterocholanic acid) and 3 alpha 12 alpha, 22 xi-trihydroxy-5 beta-cholestan-26-oic acid, with minor amounts of 3 alpha, 7 alpha, 12 alpha-trihydroxy-5beta-cholan-24-oic acid (cholic acid), 3alpha, 12 alpha-dihydroxy-5beta-cholan-24-oic acid (deoxycholic acid) and possibly other bile acids. 3. Cholic acid and deoxycholic acid represent the first known examples of bile acids common to chelonians and other animal forms: they may indicate independent evolution in chelonians to C24 bile acids. 4. The discovery of a 7-deoxy C27 bile acid is the first evidence that C27 bile acids or their conjugates have an enterohepatic circulation.  相似文献   

19.
The obligatory role of the jelly coat for maximal transport of all amino acids, including those found to be jelly coat-independent in Xenopus laevis embryos, has been shown in Bombina orientalis embryos. Amino acid transport in dejellied embryos (without fertilization membrane and jelly coats) of Bombina, reconstituted with either intact or homogenized jelly coats, was similar to the values in normal embryos. Amino acid transport in totally dejellied embryos, and those surrounded with fertilization membrane only, was similar. Reconstitution of dejellied embryos with physically denatured jelly coats did not restore full amino acid transport. Amino acid transport values using heterologous combinations of dejellied embryos and jelly coats of Bombina orientalis and Xenopus laevis were equivalent to those in homologous combinations.  相似文献   

20.
The differences among individual bile acids (BAs) in eliciting different physiological and pathological responses are largely unknown because of the lack of valid and simple analytical methods for the quantification of individual BAs and their taurine and glycine conjugates. Therefore, a simple and sensitive LC-MS/MS method for the simultaneous quantification of 6 major BAs, their glycine, and taurine conjugates in mouse liver, bile, plasma, and urine was developed and validated. One-step sample preparation using solid-phase extraction (for bile and urine) or protein precipitation (for plasma and liver) was used to extract BAs. This method is valid and sensitive with a limit of quantification ranging from 10 to 40 ng/ml for the various analytes, has a large dynamic range (2500), and a short run time (20 min). Detailed BA profiles were obtained from mouse liver, plasma, bile, and urine using this method. Muricholic acid (MCA) and cholic acid (CA) taurine conjugates constituted more than 90% of BAs in liver and bile. BA concentrations in liver were about 300-fold higher than in plasma, and about 180-fold higher in bile than in liver. In summary, a reliable and simple LC-MS/MS method to quantify major BAs and their metabolites was developed and applied to quantify BAs in mouse tissues and fluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号