首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The budding yeast Srs2 is the archetype of helicases that regulate several aspects of homologous recombination (HR) to maintain genomic stability. Srs2 inhibits HR at replication forks and prevents high frequencies of crossing-over. Additionally, sensitivity to DNA damage and synthetic lethality with replication and recombination mutants are phenotypes that can only be attributed to another role of Srs2: the elimination of lethal intermediates formed by recombination proteins. To shed light on these intermediates, we searched for mutations that bypass the requirement of Srs2 in DNA repair without affecting HR. Remarkably, we isolated rad52-L264P, a novel allele of RAD52, a gene that encodes one of the most central recombination proteins in yeast. This mutation suppresses a broad spectrum of srs2Δ phenotypes in haploid cells, such as UV and γ-ray sensitivities as well as synthetic lethality with replication and recombination mutants, while it does not significantly affect Rad52 functions in HR and DNA repair. Extensive analysis of the genetic interactions between rad52-L264P and srs2Δ shows that rad52-L264P bypasses the requirement for Srs2 specifically for the prevention of toxic Rad51 filaments. Conversely, this Rad52 mutant cannot restore viability of srs2Δ cells that accumulate intertwined recombination intermediates which are normally processed by Srs2 post-synaptic functions. The avoidance of toxic Rad51 filaments by Rad52-L264P can be explained by a modification of its Rad51 filament mediator activity, as indicated by Chromatin immunoprecipitation and biochemical analysis. Remarkably, sensitivity to DNA damage of srs2Δ cells can also be overcome by stimulating Rad52 sumoylation through overexpression of the sumo-ligase SIZ2, or by replacing Rad52 by a Rad52-SUMO fusion protein. We propose that, like the rad52-L264P mutation, sumoylation modifies Rad52 activity thereby changing the properties of Rad51 filaments. This conclusion is strengthened by the finding that Rad52 is often associated with complete Rad51 filaments in vitro.  相似文献   

2.
Homologous recombination represents an important means for the error-free elimination of DNA double-strand breaks and other deleterious DNA lesions from chromosomes. The Rad51 recombinase, a member of the RAD52 group of recombination proteins, catalyzes the homologous recombination reaction in the context of a helical protein polymer assembled on single-stranded DNA (ssDNA) that is derived from the nucleolytic processing of a primary lesion. The assembly of the Rad51-ssDNA nucleoprotein filament, often referred to as the presynaptic filament, is prone to interference by the single-strand DNA-binding factor replication protein A (RPA). The Saccharomyces cerevisiae Rad52 protein facilitates presynaptic filament assembly by helping to mediate the displacement of RPA from ssDNA. On the other hand, disruption of the presynaptic filament by the Srs2 helicase leads to a net exchange of Rad51 for RPA. To understand the significance of protein-protein interactions in the control of Rad52- or Srs2-mediated presynaptic filament assembly or disassembly, we have examined two rad51 mutants, rad51 Y388H and rad51 G393D, that are simultaneously ablated for Rad52 and Srs2 interactions and one, rad51 A320V, that is differentially inactivated for Rad52 binding for their biochemical properties and also for functional interactions with Rad52 or Srs2. We show that these mutant rad51 proteins are impervious to the mediator activity of Rad52 or the disruptive function of Srs2 in concordance with their protein interaction defects. Our results thus provide insights into the functional significance of the Rad51-Rad52 and Rad51-Srs2 complexes in the control of presynaptic filament assembly and disassembly. Moreover, our biochemical studies have helped identify A320V as a separation-of-function mutation in Rad51 with regards to a differential ablation of Rad52 interaction.Homologous recombination (HR)3 helps maintain genomic stability by eliminating DNA double-strand breaks induced by ionizing radiation and chemical reagents, by restarting damaged or collapsed DNA replication forks, and by elongating shortened telomeres especially when telomerase is dysfunctional (13). Accordingly, defects in HR invariably lead to enhanced sensitivity to genotoxic agents, chromosome aberrations, and tumor development (4, 5). In meiosis also, HR helps mediate the linkage of homologous chromosome pairs via arm cross-overs, thus ensuring the proper segregation of chromosomes at the first meiotic division (6). Accordingly, HR mutants exhibit a plethora of meiotic defects, including early meiotic cell cycle arrest, aneuploidy, and inviability.Much of the knowledge regarding the mechanistic basis of HR has been derived from studies of model organisms, such as the budding yeast Saccharomyces cerevisiae. Genetic analyses in S. cerevisiae have led to the identification of the RAD52 group of genes, namely, RAD50, RAD51, RAD52, RAD54, RAD55, RAD57, RAD59, RDH54, MRE11, and XRS2 (1), that are needed for the successful execution of HR. Each member of the RAD52 group of genes has an orthologue in higher eukaryotes, including humans, and mutations in any of these genes cause defects in HR and repair of double-strand breaks.The DNA pairing and strand invasion step of the HR reaction is mediated by RAD51-encoded protein, which is orthologous to the Escherichia coli recombinase RecA (2). Like RecA, Rad51 polymerizes on ssDNA, derived from the nucleolytic processing of a primary lesion such as a double-strand break, to form a right-handed nucleoprotein filament, often referred to as the presynaptic filament (3, 7). The presynaptic filament engages dsDNA, conducts a search for homology in the latter, and catalyzes DNA joint formation between the recombining ssDNA and dsDNA partners upon the location of homology (1, 3). As such, the timely and efficient assembly of the presynaptic filament is indispensable for the successful execution of HR.Because the nucleation of Rad51 onto ssDNA is a rate-limiting process, presynaptic filament assembly is prone to interference by the single-strand DNA-binding protein replication protein A (RPA) (1, 3, 7). In reconstituted biochemical systems, the addition of Rad52 counteracts the inhibitory action of RPA (8, 9). Consistent with the biochemical results, in both mitotic and meiotic cells, the recruitment of Rad51 to double-strand breaks is strongly dependent on Rad52 (1012). This effect of Rad52 on Rad51 presynaptic filament assembly has been termed a “recombination mediator” function (13).Interestingly, genetic studies have shown that the Srs2 helicase fulfills the role of an anti-recombinase. Specifically, mutations in Srs2 often engender a hyper-recombinational phenotype and can also help suppress the DNA damage sensitivity of rad6 and rad18 mutants, because of the heightened HR proficiency being able to substitute for the post-replicative DNA repair defects of these mutant cells (2, 14). Importantly, in reconstituted systems, Srs2 exerts a strong inhibitory effect on Rad51-mediated reactions in a manner that is potentiated by RPA. Biochemical and electron microscopic analyses have provided compelling evidence that Srs2 acts by disassembling the presynaptic filament, to effect the replacement of Rad51 by RPA (15, 16). The ability of Srs2 to dissociate the presynaptic filament relies on its ATPase activity, revealed using mutant variants, K41A and K41R, that harbor changes in the Walker type A motif involved in ATP engagement. Accordingly, the srs2 K41A and srs2 K41R mutants are biologically inactive (17).In both yeast two-hybrid and biochemical analyses, a complex of Rad51 with either Rad52 or Srs2 can be captured (1, 16). Using yeast two-hybrid-based mutagenesis, several rad51 mutant alleles, A320V, Y388H, and G393D, that engender a defect in the yeast two-hybrid association with Rad52 have been found (18). Here we document our biochemical studies demonstrating the inability of these rad51 mutant proteins to physically and functionally interact with Rad52. Interestingly, we find that two of these rad51 mutants, namely, Y388H and G393D, are also defective in Srs2 interaction. Accordingly, these mutant rad51 proteins form presynaptic filaments that are resistant to the disruptive action of Srs2. Our results thus emphasize the role of Rad51-Rad52 and Rad51-Srs2 interactions in the regulation of Rad51 presynaptic filament assembly and maintenance, and they also reveal the presence of overlapping Rad52 and Srs2 interaction motifs in Rad51. In these regards, our biochemical studies have identified the A320V change as a separation-of-function mutation in Rad51.  相似文献   

3.
4.
R. H. Schiestl  S. Prakash    L. Prakash 《Genetics》1990,124(4):817-831
rad6 mutants of Saccharomyces cerevisiae are defective in the repair of damaged DNA, DNA damage induced mutagenesis, and sporulation. In order to identify genes that can substitute for RAD6 function, we have isolated genomic suppressors of the UV sensitivity of rad6 deletion (rad6 delta) mutations and show that they also suppress the gamma-ray sensitivity but not the UV mutagenesis or sporulation defects of rad6. The suppressors show semidominance for suppression of UV sensitivity and dominance for suppression of gamma-ray sensitivity. The six suppressor mutations we isolated are all alleles of the same locus and are also allelic to a previously described suppressor of the rad6-1 nonsense mutation, SRS2. We show that suppression of rad6 delta is dependent on the RAD52 recombinational repair pathway since suppression is not observed in the rad6 delta SRS2 strain containing an additional mutation in either the RAD51, RAD52, RAD54, RAD55 or RAD57 genes. Possible mechanisms by which SRS2 may channel unrepaired DNA lesions into the RAD52 DNA repair pathway are discussed.  相似文献   

5.
The RFA1 gene encodes the large subunit of the yeast trimeric single-stranded DNA binding protein replication protein A (RPA), which is known to play a critical role in DNA replication. A Saccharomyces cerevisiae strain carrying the rfa1-44 allele displays a number of impaired recombination and repair phenotypes, all of which are suppressible by overexpression of RAD52. We demonstrate that a rad52 mutation is epistatic to the rfa1-44 mutation, placing RFA1 and RAD52 in the same genetic pathway. Furthermore, two-hybrid analysis indicates the existence of interactions between Rad52 and all three subunits of RPA. The nature of this Rad52-RPA interaction was further explored by using two different mutant alleles of rad52. Both mutations lie in the amino terminus of Rad52, a region previously defined as being responsible for its DNA binding ability (U. H. Mortenson, C. Beudixen, I. Sunjeuaric, and R. Rothstein, Proc. Natl. Acad. Sci. USA 93:10729–10734, 1996). The yeast two-hybrid system was used to monitor the protein-protein interactions of the mutant Rad52 proteins. Both of the mutant proteins are capable of self-interaction but are unable to interact with Rad51. The mutant proteins also lack the ability to interact with the large subunit of RPA, Rfa1. Interestingly, they retain their ability to interact with the medium-sized subunit, Rfa2. Given the location of the mutations in the DNA binding domain of Rad52, a model incorporating the role of DNA in the protein-protein interactions involved in the repair of DNA double-strand breaks is presented.  相似文献   

6.
7.
In the yeast Saccharomyces cerevisiae, the RAD52 gene is indispensable for homologous recombination and DNA repair. Rad52 protein binds DNA, anneals complementary ssDNA strands, and self-associates to form multimeric complexes. Moreover, Rad52 physically interacts with the Rad51 recombinase and serves as a mediator in the Rad51-catalyzed DNA strand exchange reaction. Here, we examine the functional significance of the Rad51/Rad52 interaction. Through a series of deletions, we have identified residues 409-420 of Rad52 as being indispensable and likely sufficient for its interaction with Rad51. We have constructed a four-amino acid deletion mutation within this region of Rad52 to ablate its interaction with Rad51. We show that the rad52delta409-412 mutant protein is defective in the mediator function in vitro even though none of the other Rad52 activities, namely, DNA binding, ssDNA annealing, and protein oligomerization, are affected. We also show that the sensitivity of the rad52delta409-412 mutant to ionizing radiation can be complemented by overexpression of Rad51. These results thus demonstrate the significance of the Rad51-Rad52 interaction in homologous recombination.  相似文献   

8.
Homologous recombination is associated with the dynamic assembly and disassembly of DNA–protein complexes. Assembly of a nucleoprotein filament comprising ssDNA and the RecA homolog, Rad51, is a key step required for homology search during recombination. The budding yeast Srs2 DNA translocase is known to dismantle Rad51 filament in vitro. However, there is limited evidence to support the dismantling activity of Srs2 in vivo. Here, we show that Srs2 indeed disrupts Rad51-containing complexes from chromosomes during meiosis. Overexpression of Srs2 during the meiotic prophase impairs meiotic recombination and removes Rad51 from meiotic chromosomes. This dismantling activity is specific for Rad51, as Srs2 Overexpression does not remove Dmc1 (a meiosis-specific Rad51 homolog), Rad52 (a Rad51 mediator), or replication protein A (RPA; a single-stranded DNA-binding protein). Rather, RPA replaces Rad51 under these conditions. A mutant Srs2 lacking helicase activity cannot remove Rad51 from meiotic chromosomes. Interestingly, the Rad51-binding domain of Srs2, which is critical for Rad51-dismantling activity in vitro, is not essential for this activity in vivo. Our results suggest that a precise level of Srs2, in the form of the Srs2 translocase, is required to appropriately regulate the Rad51 nucleoprotein filament dynamics during meiosis.  相似文献   

9.
G. T. Milne  T. Ho    D. T. Weaver 《Genetics》1995,139(3):1189-1199
RAD52 function is required for virtually all DNA double-strand break repair and recombination events in Saccharomyces cerevisiae. To gain greater insight into the mechanism of RAD52-mediated repair, we screened for genes that suppress partially active alleles of RAD52 when mutant or overexpressed. Described here is the isolation of a phenotypic null allele of SRS2 that suppressed multiple alleles of RAD52 (rad52B, rad52D, rad52-1 and KlRAD52) and RAD51 (KlRAD51) but failed to suppress either a rad52δ or a rad51δ. These results indicate that SRS2 antagonizes RAD51 and RAD52 function in recombinational repair. The mechanism of suppression of RAD52 alleles by srs2 is distinct from that which has been previously described for RAD51 overexpression, as both conditions were shown to act additively with respect to the rad52B allele. Furthermore, overexpression of either RAD52 or RAD51 enhanced the recombination-dependent sensitivity of an srs2δ RAD52 strain, suggesting that RAD52 and RAD51 positively influence recombinational repair mechanisms. Thus, RAD52-dependent recombinational repair is controlled both negatively and positively.  相似文献   

10.
Suppressors of the methyl methanesulfonate sensitivity of Saccharomyces cerevisiae diploids lacking the Srs2 helicase turned out to contain semidominant mutations in Rad5l, a homolog of the bacterial RecA protein. The nature of these mutations was determined by direct sequencing. The 26 mutations characterized were single base substitutions leading to amino acid replacements at 18 different sites. The great majority of these sites (75%) are conserved in the family of RecA-like proteins, and 10 of them affect sites corresponding to amino acids in RecA that are probably directly involved in ATP reactions, binding, and/or hydrolysis. Six mutations are in domains thought to be involved in interaction between monomers; they may also affect ATP reactions. By themselves, all the alleles confer a rad5l null phenotype. When heterozygous, however, they are, to varying degrees, negative semidominant for radiation sensitivity; presumably the mutant proteins are coassembled with wild-type Rad51 and poison the resulting nucleofilaments or recombination complexes. This negative effect is partially suppressed by an SRS2 deletion, which supports the hypothesis that Srs2 reverses recombination structures that contain either mutated proteins or numerous DNA lesions.  相似文献   

11.
The cohesin complex is responsible for the fidelity of chromosomal segregation during mitosis. It consists of four core subunits, namely Rad21/Mcd1/Scc1, Smc1, Smc3, and one of the yeast Scc3 orthologs SA1 or SA2. Sister chromatid cohesion is generated during DNA replication and maintained until the onset of anaphase. Among the many proposed models of the cohesin complex, the ''core'' cohesin subunits Smc1, Smc3, and Rad21 are almost universally displayed as tripartite ring. However, other than its supportive role in the cohesin ring, little is known about the fourth core subunit SA1/SA2. To gain deeper insight into the function of SA1/SA2 in the cohesin complex, we have mapped the interactive regions of SA2 and Rad21 in vitro and ex vivo. Whereas SA2 interacts with Rad21 through a broad region (301–750 aa), Rad21 binds to SA proteins through two SA-binding motifs on Rad21, namely N-terminal (NT) and middle part (MP) SA-binding motif, located at 60–81 aa of the N-terminus and 383–392 aa of the MP of Rad21, respectively. The MP SA-binding motif is a 10 amino acid, α-helical motif. Deletion of these 10 amino acids or mutation of three conserved amino acids (L385, F389, and T390) in this α-helical motif significantly hinders Rad21 from physically interacting with SA1/2. Besides the MP SA-binding motif, the NT SA-binding motif is also important for SA1/2 interaction. Although mutations on both SA-binding motifs disrupt Rad21-SA1/2 interaction, they had no apparent effect on the Smc1-Smc3-Rad21 interaction. However, the Rad21-Rad21 dimerization was reduced by the mutations, indicating potential involvement of the two SA-binding motifs in the formation of the two-ring handcuff for chromosomal cohesion. Furthermore, mutant Rad21 proteins failed to significantly rescue precocious chromosome separation caused by depletion of endogenous Rad21 in mitotic cells, further indicating the physiological significance of the two SA-binding motifs of Rad21.  相似文献   

12.
In the budding yeast Saccharomyces cerevisiae, the RAD52 gene is essential for all homologous recombination events and its homologue, the RAD59 gene, is important for those that occur independently of RAD51. Both Rad52 and Rad59 proteins can anneal complementary single-stranded (ss) DNA. We quantitatively examined the ssDNA annealing activity of Rad52 and Rad59 proteins and found significant differences in their biochemical properties. First, and most importantly, they differ in their ability to anneal ssDNA that is complexed with replication protein A (RPA). Rad52 can anneal an RPA-ssDNA complex, but Rad59 cannot. Second, Rad59-promoted DNA annealing follows first-order reaction kinetics, whereas Rad52-promoted annealing follows second-order reaction kinetics. Last, Rad59 enhances Rad52-mediated DNA annealing at increased NaCl concentrations, both in the absence and presence of RPA. These results suggest that Rad59 performs different functions in the recombination process, and should be more accurately viewed as a Rad52 paralogue.  相似文献   

13.
14.
Davis AP  Symington LS 《DNA Repair》2003,2(10):1127-1134
The RAD52 gene is essential for homology-dependent repair of double-strand breaks in Saccharomyces cerevisiae. Rad52 forms complexes with Rad51, replication protein A (RPA) or Rad59 and its presence is essential for the formation of Rad51-Rad52-Rad59 and RPA-Rad52-Rad59 complexes. The N-terminal region of Rad52, which is required for self-interaction to form a ring structure, is required for interaction with Rad59. Rad59 also shows self-interaction suggesting the formation of heteromeric and homomeric rings of Rad52 and Rad59. In wild-type cells, we propose the Rad51-Rad52-Rad59 complex is involved in conservative recombination events, including gene conversion and reciprocal recombination, whereas the Rad52-Rad59 complex participates in single-strand annealing.  相似文献   

15.
Homologous recombination is an important pathway for the repair of DNA double-strand breaks (DSBs). In the yeast Saccharomyces cerevisiae, Rad52 is a central recombination protein, whereas its paralogue, Rad59, plays a more subtle role in homologous recombination. Both proteins can mediate annealing of complementary single-stranded DNA in vitro, but only Rad52 interacts with replication protein A and the Rad51 recombinase. We have studied the functional overlap between Rad52 and Rad59 in living cells using chimeras of the two proteins and site-directed mutagenesis. We find that Rad52 and Rad59 have both overlapping as well as separate functions in DSB repair. Importantly, the N-terminus of Rad52 possesses functions not supplied by Rad59, which may account for its central role in homologous recombination.  相似文献   

16.
The eukaryotic single-stranded DNA-binding protein, replication protein A (RPA), is essential for DNA replication, and plays important roles in DNA repair and DNA recombination. Rad52 and RPA, along with other members of the Rad52 epistasis group of genes, repair double-stranded DNA breaks (DSBs). Two repair pathways involve RPA and Rad52, homologous recombination and single-strand annealing. Two binding sites for Rad52 have been identified on RPA. They include the previously identified C-terminal domain (CTD) of RPA32 (residues 224-271) and the newly identified domain containing residues 169-326 of RPA70. A region on Rad52, which includes residues 218-303, binds RPA70 as well as RPA32. The N-terminal region of RPA32 does not appear to play a role in the formation of the RPA:Rad52 complex. It appears that the RPA32CTD can substitute for RPA70 in binding Rad52. Sequence homology between RPA32 and RPA70 was used to identify a putative Rad52-binding site on RPA70 that is located near DNA-binding domains A and B. Rad52 binding to RPA increases ssDNA affinity significantly. Mutations in DBD-D on RPA32 show that this domain is primarily responsible for the ssDNA binding enhancement. RPA binding to Rad52 inhibits the higher-order self-association of Rad52 rings. Implications for these results for the "hand-off" mechanism between protein-protein partners, including Rad51, in homologous recombination and single-strand annealing are discussed.  相似文献   

17.
Davis AP  Symington LS 《Genetics》2001,159(2):515-525
The yeast RAD52 gene is essential for homology-dependent repair of DNA double-strand breaks. In vitro, Rad52 binds to single- and double-stranded DNA and promotes annealing of complementary single-stranded DNA. Genetic studies indicate that the Rad52 and Rad59 proteins act in the same recombination pathway either as a complex or through overlapping functions. Here we demonstrate physical interaction between Rad52 and Rad59 using the yeast two-hybrid system and co-immunoprecipitation from yeast extracts. Purified Rad59 efficiently anneals complementary oligonucleotides and is able to overcome the inhibition to annealing imposed by replication protein A (RPA). Although Rad59 has strand-annealing activity by itself in vitro, this activity is insufficient to promote strand annealing in vivo in the absence of Rad52. The rfa1-D288Y allele partially suppresses the in vivo strand-annealing defect of rad52 mutants, but this is independent of RAD59. These results suggest that in vivo Rad59 is unable to compete with RPA for single-stranded DNA and therefore is unable to promote single-strand annealing. Instead, Rad59 appears to augment the activity of Rad52 in strand annealing.  相似文献   

18.
Coordinated response of mammalian Rad51 and Rad52 to DNA damage   总被引:3,自引:0,他引:3       下载免费PDF全文
Liu Y  Maizels N 《EMBO reports》2000,1(1):85-90
Biochemical analysis has shown that mammalian Rad51 and Rad52 interact and synergize in DNA recombination reactions in vitro, but these proteins have not been shown to function together in response to DNA damage in vivo. By analysis of murine cells expressing murine Rad52 tagged with green fluorescent protein (GFP)–Rad52, we now show that DNA damage causes Rad51 and GFP–Rad52 to colocalize in distinct nuclear foci. Cells expressing GFP–Rad52 show both increased survival and an increased number of Rad51 foci, raising the possibility that Rad52 is limiting for repair. These observations provide evidence of coordinated function of Rad51 and Rad52 in vivo and support the hypothesis that Rad52 plays an important role in the DNA damage response in mammalian cells.  相似文献   

19.
The structures and properties of the Rad51 and Rad52 proteins in eukaryotes are described. Both proteins form a complex and are responsible for recombination and repair reactions. The N-terminal region of the Rad51 protein interacts with the C-terminal region of the Rad52 protein. Species-specific interaction is probably essential for the functioning of these genes.  相似文献   

20.
The Rad52 protein plays a crucial role in repairing DNA damage and homologous recombination, possibly by virtue of its ability to catalyze annealing of single-stranded DNA. In agreement with recent genetic data, we here present results based on the two-hybrid system, demonstrating that mouse Rad52p is able to form homomeric complexes. A small domain necessary and sufficient for the self-interaction is located in the conserved N-terminus of the protein. These data contribute to the important insights into the architecture of the multi-protein complex involved in recombinational DNA repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号