首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A two-fold increase in acetylcholine, that can randomly be released by brain synaptosomes, is registered 60 min following whole-body X-irradiation of rats with a dose of 0.21 C/kg; depolarization of the synaptosome membranes by potassium chloride increases the release of acetylcholine the augmentation of the release in this case being lower than that in the control. The initial rate of spontaneous neuromediator release from synaptosomes grows by 80 per cent whereas after depolarization of synaptosome membranes by potassium chloride, by 15 per cent. There is a 2.5-fold increase in the maximum rate of a highly specific uptake of choline with Km value being constant. Acetylcholine content of gray substance of irradiated rat brain is invariable.  相似文献   

2.
LR5182 inhibited the uptake of dopamine in rat striatal synaptosomes and the uptake of norepinephrine in cortical synaptosomes with inhibitor constants, Ki values, of 3nM and 58nM, respectively. It was only a week inhibitor of serotonin uptake in cortical synaptosomes with a Ki value of 1.7μM. The uptake of dopamine and norepinephrine were significantly lowered within an hour after an intraperitoneal injection of LR5182. Among known inhibitors of dopamine uptake in synaptosomes of rat brain, LR5182 is most effective and selective. The rigid structure of LR5182 (Figure 1) suggested a gauche conformation of dopamine to be favored by the striatal uptake of dopamine.  相似文献   

3.
Topography of synaptosomal high affinity uptake systems.   总被引:2,自引:0,他引:2  
We have tested the hypothesis that the glycoproteins in the cell membrane of axonal terminals are involved in high affinity uptake of neurotransmitters by studying the effects of lectin binding and trypsin treatment on this process in synaptosomes. Binding of two lectins, Concanavalin A and a lectin isolated from the lentil Lens culinaris, to synaptosomes does not change the uptake of six putative transmitters: L-glutamate, norepinephrine (NE), 5-hydroxytryptamine (5-HT), dopamine, choline (Ch), and γ-aminobutyrate (GABA). While trypsin digestion of surface proteins of synaptosomes has no effect on the uptake of NE, 5-HT, dopamine, Ch and GABA, it reduces the rate of uptake of L-glutamate. This reduction is not due to synaptosomal lysis or a profound conformational change of the synaptic plasma membrane since the maximal velocity of high affinity uptake is reduced drastically with little attendant change in Km.  相似文献   

4.
Gamma irradiation (60Co) reduced KCl-stimulated voltage-dependent 45Ca2+ uptake in whole-brain, cortical, and striatal synaptosomes. The time course (3, 10, 30, and 60 s) of calcium uptake by irradiated (3 Gy) and nonirradiated synaptosomes, as well as the effect of KCl (15-65 mM), was measured in whole-brain synaptosomes. The fastest and highest rate of depolarization-dependent calcium uptake occurred at 3 s with 65 mM KCl. Irradiation reduced calcium uptake at all incubation times and KCl concentrations. Bay K 8644 enhancement of KCl-stimulated calcium influx was also reduced by radiation exposure. Nimodipine binding to dihydropyridine (DHP) L-type calcium channel receptors was not altered following radiation exposure. These results demonstrate an inhibitory effect of ionizing radiation on the voltage-sensitive calcium channels in rat brain synaptosomes that are not mediated by DHP receptors.  相似文献   

5.
The effect of 13 hallucinogens on the uptake of serotonin and norepinephrine into hippocampal synaptosomes and of serotonin and dopamine into caudate synaptosomes was found to be inhibitory, except for lysergic acid diethylamide and 2-bromolysergic acid diethylamide, which were inactive. The indoleal-kylamines were generally more potent than the phenylethylamines. The reported inhibition of uptake of serotonin by 5-methoxy-N,N-dimethyltryptamine and lysergic acid diethylamide into whole brain synaptosomes was not reproducible at concentrations 102 to 104 times higher than those stated in the literature.  相似文献   

6.
The effects of iron-dependent peroxidation on respiration and neurotransmitter transport of brain nerve endings has been studied. Rat brain synaptosomes were peroxidized by exposure to an ADP-Fe/ascorbate system and the protective effect of added Se, Cd, or Zn was investigated with regard to dopamine and gamma-aminobutyric acid (GABA) transport. Peroxidation impaired the respiration of synaptosomes by about 20% and caused a marked increase in dopamine uptake; but in contrast, peroxidation induced a large decrease in synaptosomal uptake of GABA. The increased dopamine transport into synaptosomes was partially prevented by the presence of Zn, Se, or Cd. The presence of Zn, Cd, or Se, in order of decreasing effectiveness, also slowed down ADP-Fe/ascorbate mediated peroxidation of synaptosomes. Peroxidation caused a significant inhibition of veratridine-dependent release of both dopamine and GABA from synaptosomes, but the KCl-dependent release of these neurotransmitters was not effected by peroxidation. These results implicate that peroxidation damage of nerve endings may lead to large changes in neurotransmitter transport thus resulting in an alteration in the function of the central nervous system.  相似文献   

7.
Phosphodiesterase of cyclic nucleotides from membranes of rat brain synaptosomes hydrolyzes cAMP and cGMP; the maximal rate of cAMP hydrolysis is 2.5 times higher than the values of the analogous index for GMP. The enzyme is found to be activated by calmodulin. A different direction of changes in the rate of cAMP and cGMP hydrolysis is observed 1 h after total X-ray irradiation. The process of cAMP hydrolysis by phosphodiesterase is characterized by positive cooperativity which is also shown after irradiation and for the process of cGMP hydrolysis. It is established that enzyme inhibition by the reaction product takes place both in control and after irradiation.  相似文献   

8.
The dopamine transporter (DAT) substrates dopamine, d-amphetamine (AMPH), and methamphetamine are known to rapidly and transiently reduce DAT activity and/or surface expression in dorsal striatum and heterologous expression systems. We sought to determine if similar substrate-induced regulation of DATs occurs in rat nucleus accumbens. In dorsal striatum synaptosomes, brief (15-min) in vitro substrate pre-exposure markedly decreased maximal [3H]dopamine uptake velocity whereas identical substrate pre-exposure in nucleus accumbens synaptosomes produced a smaller, non-significant reduction. However, 45 min after systemic AMPH administration, maximal ex vivo [3H]dopamine uptake velocity was significantly reduced in both brain regions. Protein kinase C inhibition blocked AMPH's down-regulation of DAT activity. DAT synaptosomal surface expression was not modified following either the brief in vitro or in vivo AMPH pre-exposure but was reduced after a longer (1-h) in vitro pre-exposure in both brain regions. Together, our findings suggest that relatively brief substrate exposure results in greater down-regulation of DAT activity in dorsal striatum than in nucleus accumbens. Moreover, exposure to AMPH appears to regulate striatal DATs in a biphasic manner, with an initial protein kinase C-dependent decrease in DAT-mediated uptake velocity and then, with longer exposure, a reduction in DAT surface expression.  相似文献   

9.
The effects of cerebral ischemia, induced for 10 min by bilateral common carotid ligation in the Mongolian gerbil, on the brain and synaptosomal content of phospholipids and free fatty acids were measured. Moreover, the incorporation of arachidonic acid and oleoyl-CoA into phospholipids, as well as the respiration and the accumulation of45Ca, norepinephrine, dopamine, choline, glutamate, and -aminobutyrate in the ischemic brain synaptosomal fraction were studied. Analyses of lipids showed a drop in phospholipids content with concomitant increase of lysocompounds and free fatty acids in ischemic cerebral cortex. Disturbances in lipid metabolism including rapid phospholipids hydrolysis and changes in the incorporation of arachidonic acid into inositol and choline phosphoglycerides were also shown in the synaptosomal fraction of ischemic brain. The uptake of neurotransmitter substances, expressed as a percent of control value, was reduced 21% for norepinephrine, 40% for dopamine, 20% for choline, 24% for glutamate and 13% for -aminobutyrate in ischemic synaptosomes. There was no significant effect of ischemia on synaptosomal respiration and45Ca uptake in both control and high potassium media. the inhibition of neurotransmitter uptake in ischemic brain synaptosomes may be caused by the disturbance of fatty acid metabolism.  相似文献   

10.
A fraction containing neurotransmitter storage vesicles was isolated from rat whole brain and brain regions, and the uptakes of [3H]norepinephrine and [3H]serotonin were determined in vitro. Norepinephrine uptake in vesicle preparations from corpus striatum was higher than in prep arations from cerebral cortex, and uptake in vesicles from the remainder (midbrain + brainstem + cerebellum) was intermediate. The Km for norepinephrine uptake was the same in the three brain regions, but the regions differed in maximal uptake capacity by factors which paralleled total catecholamine concentration rather than content of norepinephrine alone. Intracisternal administration of 6-hydroxydopamine, but not of 5,6-dihydroxytryptamine, reduced vesicular norepinephrine uptake, and pretreat-ment with desmethylimipramine (which protects specifically norepinephrine neurons but not dopamine neurons from the 6-hydroxydopamine) only partially prevented the loss of vesicular norepinephrine uptake. These studies indicate that uptake of norepinephrine by rat brain vesicle preparations occurs in vesicles from norepinephrine and dopamine neurons, but probably not in vesicles from serotonin neurons. Uptake of serotonin by brain vesicle preparations exhibited time, temperature and ATP-Mg2+ requirements nearly identical to those of norepinephrine uptake. The affinity of serotonin uptake matched that of serotonin for inhibition of norepinephrine uptake, and the maximal capacity was the same for serotonin as for norepinephrine. Norepinephrine, dopamine and reserpine inhibited serotonin uptake in a purely competitive fashion, with Kis similar to those for inhibition of norepinephrine uptake. Whereas 5,6-dihydroxytryptamine treatment reduced synaptosomal serotonin uptake but not vesicular serotonin uptake, 6-hydroxydopamine reduced vesicular serotonin uptake in the absence of reductions in synaptosomal serotonin uptake. Thus, in this preparation, serotonin appears to be taken up in vitro into catecholamine vesicles, rather than into serotonin vesicles.  相似文献   

11.
The pH dependence of the initial uptake of norepinephrine by rat whole brain synaptosomes was studied using short incubation times at 37 degrees C in order to examine the possible involvement of the phenolic OH group. The pH vs. uptake profile exhibits a maximum near pH 8.2 in H2O medium. When the medium was changed to 2H2O, the profile showed a shift of maximum corresponding to the pKa change of the phenolic OH group. The pH vs. uptake profile of tyramine was quite different from that of norepinephrine. These pH effects on uptake were explained as manifestations of the involvement of the phenolic OH group in the process. The amine and phenolic hydroxyl groups in norepinephrine were studied separately by employing two series of compounds structurally related to catecholamines, amphetamine-like and catechol-like, for their inhibitory effects on the uptake. The inhibitions were affected by changes in pH with changes in opposite directions found for the two series indicating the need for a positive charge in the side chain and suggesting an effect of the negative charge on the ring. These charge characteristics agreed with the pH profile observed in uptake. Consequently, the two groups with opposite charge characteristics in norepinephrine both appear to function in the uptake process.  相似文献   

12.
Lilly 110140 is a highly selective inhibitor of serotonin uptake into synaptosomes of rat brain, unlike previous monoamine uptake inhibitors that also inhibit the uptake of norepinephrine and dopamine. Lilly 110140 should be useful in studying the function of serotoninergic neurons and may be helpful in clariying the role of serotonin in certain types of mental depression.  相似文献   

13.
EFFECT OF γ-AMINOBUTYRIC ACID ON BRAIN SEROTONIN AND CATECHOLAMINES   总被引:1,自引:0,他引:1  
—Intraperitoneal injections of GABA (5 mg/kg) to rats lowered the level of norepinephrine in brain, heart and spleen but not suprarenals and raised that of serotonin in brain. Changes of these monoamines were most pronounced in the hypothalamic region after 20min. A reduction of hypothalamic norepinephrine was also observed 15min following the intracarotid administration of 0·5 mg/kg of GABA. In these experiments there was a concomitant increase in the level of free GABA in the anterior portion of the ventral hypothalamus. Brain dopamine level and 5-hydroxytryptophan decarboxylase, dihydroxyphenylalanine decarboxylase and monoamine oxidase activities were not affected. The 20 per cent increase of endogenous GABA observed in the midbrain 30 min following the administration of amino-oxyacetic acid was accompanied by a sharp fall in norepinephrine level (39 per cent) and an increase in serotonin (20 per cent). In in vitro studies 10–300 μg/ml of GABA were shown to release norepinephrine from cortical and hypothalamic slices, and to inhibit serotonin release without affecting 5-hydroxytryptophan uptake and to have no effect on the release of dopamine from slices of the region of the corpus striatum nor on the activity of the enzymes mentioned. Subcellular studies showed that the particulate:supernatant ratio for norepinephrine was reduced from a control value of 2·04 to 1·75 and that of serotonin was raised from 2·8 to 3·5. Following pretreatment with iproniazid, GABA reduced the raised level of brain norepinephrine to a greater extent than reserpine but not as intensively as amphetamine. The results obtained suggest that these monoamines may be involved in the mechanisms underlying the action of GABA in brain and that the effect of GABA on brain monoamines may be of certain significance in synaptic events.  相似文献   

14.
Hypoxia induces alterations of central monoaminergic transmission and of behavior. We studied the effect of hypoxia on adult and newborn rats to obtain more information about long-lasting changes of dopamine (DA) transmission caused by neonatal hypoxia. One single exposure of adult rats to hypoxia leads to short-term alterations of DA uptake: decreased affinity of the uptake carrier to DA (Km, 269.5% versus control) and a sharp increase of Vmax up to 301.4% resulting in an increase of total uptake of DA into the striatum synaptosomes. The K+-evoked DA release decreased to 69.5%. After 1 week of recovery all parameters are normalized. Chronic postnatal hypoxia (postnatal day 2-11) caused long-lasting changes of DA release and uptake opposite to those observed in adult rats. Three months after hypoxia, the K+-stimulated DA release was enhanced (132% of control), and the uptake was reduced due to decreased affinity of the uptake carrier system for the substrate (Km, 187% of control value). In conclusion, the alterations observed after chronic postnatal hypoxia reflect special adaptive processes that are related to the high plasticity of the immature neonatal brain and contribute to an increased DA function in the nigrostriatal system.  相似文献   

15.
A number of studies have found that the chronic administration of nicotine causes an increase in the density of nicotinic binding sites in the brain, but it is not known whether these additional binding sites are functionally active receptors. In this study, the effects of 1-week administration of the potent nicotinic agonist, (+)-anatoxin-a (96 nmol/day via osmotic minipumps), was assessed on [3H]nicotine binding and [3H]dopamine uptake and release in rat striatal synaptosomes. Chronic (+)-anatoxin-a treatment resulted in a 32% increase in the Bmax of [3H]nicotine binding in anatoxin-treated animals compared to control. There was a 43% increase in the activity of 3 microM nicotine to release [3H]dopamine from synaptosomes of anatoxin-treated animals, but the release induced by 20 mM K+ depolarization was unaffected. There was no effect of chronic (+)-anatoxin-a treatment on the uptake of [3H]dopamine. A strong positive correlation (r = 0.64) was found between the density of [3H]nicotine binding sites and the nicotine-induced stimulation of [3H]dopamine release in individual animals. These results indicate that (+)-anatoxin-a, like nicotine, produces an up-regulation of nicotine binding sites following chronic administration, and that these additional sites are functional receptors capable of mediating the release of dopamine from striatal synaptosomes.  相似文献   

16.
The pH dependence of the initial uptake of norepinephrine by rat whole brain synaptosomes was studied short incubation times at 37°C in order to examine the possible involvement of the phenolic OH group. The pH vs. uptake profile exhibits a maximum near pH 8.2 in H2O medium. When the medium was changed to 2H2O, the profile showed a shift of maximum corresponding to the pKa change of the phenolic OH group. The pH vs. uptake profile of tyramine was quite different from that of norepinephrine. These pH effects on uptake were explained as manifestations of the involvement of the phenolic OH group in the process.The amine and phenolic hydroxyl groups in norepinephrine were studied separately by employing two series of compounds structurally related to catecholamines, amphetamine-like and catechol0like, for their inhibitory effects on the uptake. The inhibitions were affected by changes in pH with changes in opposite directions found for the two series indicating the need for a positive charge in the side chain and suggesting an effect of the negative charge on the ring. These charge characteristics agreed with the pH profile observed in uptake. Consequently, the two groups with opposite charge characteristics in norepinephrine both appear to function in the uptake process.  相似文献   

17.
Lithium chloride exerts two opposite effects on dopamine uptake by synaptosomes isolated from rat caudate nucleus. Added in vitro, it inhibits dopamine uptake; whereas administered chronically in vivo, it enhances dopamine uptake in vitro. Thus, in vitro, 1, 2.5, 5 and 10 meqiv.l-1 of lithium chloride decrease [3H]dopamine uptake by 13, 17, 25 and 31%, respectively. Synaptosomes isolated from rats treated with lithium chloride for 20 days, show a 23% increase in [3H]dopamine uptake with respect to synaptosomes isolated from control rats. It is suggested that chronic lithium treatment stimulates a compensatory mechanism which overcomes its direct inhibitory effect on [3H]dopamine uptake.  相似文献   

18.
Ca2+ blood serum level was reduced by 34.5% in rats with hypoparathyroidism (HPT) on the 7th-12th day after the damage of parathyroid glands. Synaptosomes isolated from the brain cortex of rats during this period accumulated in a normal medium more 45Ca2+ than synaptosomes from healthy animals. In potassium depolarization, control and experimental synaptosomes accumulated more 45Ca2+, however in HPT the increment in 45Ca2+ uptake in high potassium medium was less temperature-dependent. In normal medium 3H-GABA uptake and release by synaptosomes from the brain of rats with HPT slightly differed from those in the control. On the contrary, 3H-GABA release induced by synaptosome depolarization was depressed in HPT. It is suggested that nerve terminal excretory function disturbances contribute to increased excitability of the central nervous system in hypoparathyroidism.  相似文献   

19.
Dopamine concentration in rat heart is normally very low, only a few percent of the concentration of norepinephrine. After treatment of rats with a dopamine beta-hydroxylase inhibitor, 1-cyclohexyl-2-mercapto-imidazole (CHMI), there was a rapid increase in dopamine concentration even before norepinephrine concentration had decreased perceptibility. This accumulation of dopamine was readily measured by liquid chromatography with electrochemical detection. Since the percentage change in dopamine was much greater than the percentage change in norepinephrine, especially at early times, measurement of dopamine accumulation rather than norepinephrine decline was considered as a useful measure of norepinephrine turnover. Drugs that act on noradrenergic receptors and are known to alter norepinephrine turnover were found to alter the rate of dopamine accumulation. Clonidine and guanabenz decreased dopamine accumulation after CHMI, whereas piperoxan (but not prazosin) increased dopamine accumulation after CHMI. Pergolide, a dopamine agonist whose lowering of blood pressure and cardiac rate has been suggested to be due to suppression of neurogenic release or norepinephrine, also decreased dopamine accumulation after CHMI. The results suggest that measuring dopamine accumulation may have advantages over measuring norepinephrine disappearance after dopamine beta-hydroxylase inhibition as an indicator of norepinephrine turnover in heart.  相似文献   

20.
Incubation of synaptosomes from rat brain with DL-2-amino-5-phosphonovalerate (APV) stimulated an increased release of dopamine, and this effect was strictly dependent on the extrasynaptosomal calcium level. APV increased biosynthesis of dopamine from tyrosine by 30%, whereas monoamine oxidase activity was inhibited by 30%. When synaptosomes were incubated with radioactive dopamine, APV caused a large decrease in incorporation of label into 3,4-dihydroxyphenylacetic acid but greatly increased incorporation into norepinephrine and its N-methyl derivatives. Quantification of dopamine and its metabolites in synaptosomes, using electrochemical detection, indicated that the presence of APV resulted in changes in the absolute levels of the aforementioned dopamine metabolites similar to the changes in radiolabel incorporation. Omission of Ca2+ from the extrasynaptosomal medium greatly diminished the APV-induced changes in catecholamine metabolism. The metabolic changes appear to largely result from an increased intrasynaptosomal Ca2+ level due to the APV-induced increase in calcium permeability of the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号