首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spirin  E. V. 《Biophysics》2010,55(4):675-681
A method for calculating the exposures of terrestrial animals in areas contaminated with radionuclides using a point source dose function is presented. To take into account scattered γ-radiation, the Berger formula for dose buildup factor in an infinite air medium has been parameterized. In the dosimetric model proposed, an animal phantom is presented as a parallelepiped to estimate external exposures and as a tissue-quivalent sphere to estimate internal doses. Using analytical expressions, dose rate conversion coefficients for external and internal exposures of animals have been estimated for individual radionuclides. For energies of γ-rays above 50 keV, the results are in good agreement with those estimated by the Monte Carlo method for ellipsoidal phantoms of animals.  相似文献   

2.
Doses due to external exposure of terrestrial biota are assessed using differential air kerma from radioactive sources in soil and energy-dependent ‘absorbed dose-per-air kerma’ conversion factors computed for spherical tissue-equivalent bodies. The presented approach allows computing average whole body absorbed dose for terrestrial organisms with body masses from 1 mg to 1,000 kg located at heights from 10 cm to 500 m above ground. Radioactive sources in soil emitting photons with energies from 10 keV to 10 MeV have been considered. Interpolation of the computed quantities over source energy, body mass, and height above ground results in plausible estimates of whole body average absorbed doses for non-human terrestrial biota from gamma-radiation emitted by any radionuclides in contaminated terrain.  相似文献   

3.
The substantial complexity in ecosystem–radionuclide interactions is difficult to be represented in terms of radiological doses. Thus, radiological dose assessment tools use typical exposure situations for generalized organisms and ecosystems. In the present study, site-specific data and radioactivity measurements of terrestrial organisms (grass and herbivore mammals) and abiotic components (soil) are provided. The retrieved data are used in combination with the ERICA Assessment Tool for calculation of radiological parameters. The process of radionuclide transfer within ecosystem components is represented using concentration ratios (CRs), while for the calculation of dose rates the dose conversion coefficient (DCC) methodology is applied. Comparative assessments are performed between the generic and assessment-specific radiological parameters and between the resulting dose rates. Significant differences were observed between CRs calculated in this study and those reported in the literature for cesium and thorium, which can easily be explained. On the other hand, CRs calculated for radium are in very good agreement with those reported in the literature. The DCCs exhibited some small differences between the reference and the assessment-specific organism due to mass differences. The differences were observed for internal and external dose rates, but they were less pronounced for total dose rates which are typically used in the assessment of radiological impact. The results of the current work can serve as a basis for further studies of the radiological parameters in environments that have not been studied yet.  相似文献   

4.
Radiological benchmarks for aquatic biota were developed for use at the U.S. Department of Energy's Oak Ridge Reservation as screening values to determine the spatial extent of potential ecological effects and to identify the need for additional site-specific investigation. The Point Source Dose Distribution approach was used to calculate water and sediment activities for selected radionuclides that result in a total dose rate to small and large fish of 1 Rad d?1, which is the National Council on Radiation Protection and Measurements recommended acceptable dose rate to natural populations of aquatic biota. These screening values incorporate internal and external exposures from parent isotopes and all short-lived daughter products. They also include exposures from all major alpha, beta, and gamma emissions for each isotope. Unlike exposures to chemicals, exposures to radionuclides are expressed as the dose rate received by the organism. Dose rates that account for the biological effects to the organism are additive. If the total dose rate from all radionuclides and pathways exceeds a recommended acceptable dose rate, further analysis is needed to determine the hazards posed by radionuclides. If, however, the total dose rate falls below an acceptable dose rate, radionuclides may be eliminated from further study.  相似文献   

5.
The study was done to investigate the content of manmade radionuclides in aquatic organisms of the Yenisei River near the Mining-and-Chemical Combine (MCC) and to estimate the exposure dose rates to organisms from various sources. The results of the investigation and calculations suggest that the main source of radioactive contamination of aquatic organisms is the coolant of the third MCC reactor, which is still being released into the Yenisei. Gamma-spectrometric analysis revealed 23 manmade radionuclides in the biomass of aquatic plants. The aquatic animal Phylolimnogammarus viridis and diatoms also contain manmade radionuclides. Among aquatic organisms, the highest dose rate is received by aquatic plants (up to 39 microGy/day). For most aquatic organisms under study, the dose received from the technogenic irradiation is an order of magnitude higher than the dose received from natural irradiation. The water moss (Fontinalis antipyretica) features the highest capacity to accumulate manmade radionuclides; hence, it accumulates the largest technogenic exposure dose among the study aquatic organisms.  相似文献   

6.
This study presents data on the detailed evaluation (tier 2) of a site-specific ecological risk assessment (ssERA) in a former smelter area contaminated with metals (Santo Amaro, Bahia, Brazil). Combining information from three lines of evidence (LoE), chemical (ChemLoE), ecotoxicological (EcotoxLoE) and ecological (EcoLoE), in the Triad approach, integrated risk values were calculated to rank sites and confirm the potential risk disclosed with tier 1. Risk values were calculated for the habitat and for the retention functions in each sampling point. Habitat function included the ChemLoE calculated from total metal concentrations. The EcotoxLoE was based on reproduction tests with terrestrial invertebrates (Folsomia candida, Enchytraeus crypticus, Eisenia andrei), shoot length and plant biomass (Avena sativa, Brassica rapa). For the EcoLoE, ecological parameters (microbial parameters, soil invertebrate community, litter breakdown) were used to derive risk values. Retention function included the ChemLoE, calculated from extractable metal concentrations, and the EcotoxLoE based on eluate tests with aquatic organisms (Daphnia magna reproduction and Pseudokirchneriella subcapitata growth). Results related to the habitat function indicated that the metal residues are sufficient to cause risk to biota, while the low metal levels in extracts and the general lack of toxicity in aquatic tests indicated a high soil retention capacity in most sampling points. Integrated risk of tier 2 showed the same trend of tier 1, suggesting the need to proceed with remediation actions. The high risk levels were related to direct toxicity to organisms and indirect effects, such as failure in the establishment of vegetation and the consequent loss of habitat quality for microorganisms and soil fauna. This study shed some light on the selection of tools for the tier 2 of an ssERA in tropical metal-contaminated sites, focusing on ecological receptors at risk and using available chemical methods, ecological surveys and ecotoxicity tests.  相似文献   

7.
Dietary exposures of passerine birds at the Kalamazoo River, Michigan, were examined due to the presence of polychlorinated biphenyls (PCBs) in the terrestrial and aquatic food webs. Average potential daily doses in diets were 6- to 29-fold and 16- to 35-fold greater at a contaminated location than at a reference location for PCB exposures quantified as total PCBs and 2,3,7,8–tetrachlorodibenzo-p-dioxin equivalents (TEQs), respectively. Birds with diets comprised of primarily aquatic insects had greater dietary exposure than birds with diets of primarily terrestrial insects. Risk associated with dietary exposure varied with the selection of the threshold for effects including hazard quotients, which exceeded 1 in instances where the most conservative toxicity reference values were utilized. Risk based on concentrations of PCBs in the tissues indicated little risk to avian species, and co-located studies evaluating reproductive health did not suggest that observed incidences of diminished reproductive success were related to PCB exposure. Measures of risk based on comparison to toxicity reference values (TRVs) were consistent with direct measures of ecologically relevant endpoints of reproductive fitness, but uncertainty exists in the selection of threshold values for effects in these species especially based on TEQs. This is largely due to the absence of species-specific, dose-response relationships. Therefore, the best estimate of risk is through the application of multiple lines of evidence.  相似文献   

8.
Inter-comparison of absorbed dose rates for non-human biota   总被引:5,自引:3,他引:2  
A number of approaches have been proposed to estimate the exposure of non-human biota to ionizing radiation. This paper reports an inter-comparison of the unweighted absorbed dose rates for the whole organism (compared as dose conversion coefficients, or DCCs) for both internal and external exposure, estimated by 11 of these approaches for selected organisms from the Reference Animals and Plants geometries as proposed by the International Commission on Radiological Protection. Inter-comparison results indicate that DCCs for internal exposure compare well between the different approaches, whereas variation is greater for external exposure DCCs. Where variation among internal DCCs is greatest, it is generally due to different daughter products being included in the DCC of the parent. In the case of external exposures, particularly to low-energy beta-emitters, variations are most likely to be due to different media densities being assumed. On a radionuclide-by-radionuclide basis, the different approaches tend to compare least favourably for (3)H, (14)C and the alpha-emitters. This is consistent with models with different source/target geometry assumptions showing maximum variability in output for the types of radiation having the lowest range across matter. The intercomparison demonstrated that all participating approaches to biota dose calculation are reasonably comparable, despite a range of different assumptions being made.  相似文献   

9.
Many ecosystems are linked to their adjacent ecosystems by movements of organisms. For instance, aquatic and terrestrial ecosystems are linked via emerging aquatic insects that serve as prey for terrestrial consumers. However, the role of these organisms in returning recycled carbon to the ecosystem from which it originated is not well known. This is due to the fact that values of carbon isotope signatures from terrestrial leaves and aquatic resources are usually similar and hence results of isotope mixing models need to be considered with caution. We overcame this problem by adding isotopically distinct terrestrial particulate organic carbon (tPOC) as a tracer to the experimental sides of two lakes that were divided in two equal halves with plastic curtains. We focused on aquatic insect larvae (Chironomidae) that fed on maize Zea mays leaves experimentally added to the lakes, and subsequently became prey for terrestrial predators (spiders) after emergence. The carbon isotope values of Chironomidae and spiders were significantly elevated in the lake treatment sides as compared to reference sides, whereas the values of all autochthonous resources were not affected by maize additions. Estimates from stable isotope mixing models indicated a low but demonstrable contribution of maize leaves to the diet of Chironomidae. Overlap between the isotope values of alder leaves, the major natural tPOC source, and autochthonous resources prevented a reliable quantification of allochthony of Chironomidae. However, we qualitatively demonstrated the flow of terrestrial particulate organic carbon to lakes, as leaf fall, and back to terrestrial surroundings via emerging insects. This ‘boomerang’ carbon flux between land and lakes blurs the distinction between autochthonous and allochthonous carbon sources.  相似文献   

10.
Environmental risk assessments (ERA) support regulatory decisions for the commercial cultivation of genetically modified (GM) crops. The ERA for terrestrial agroecosystems is well-developed, whereas guidance for ERA of GM crops in aquatic ecosystems is not as well-defined. The purpose of this document is to demonstrate how comprehensive problem formulation can be used to develop a conceptual model and to identify potential exposure pathways, using Bacillus thuringiensis (Bt) maize as a case study. Within problem formulation, the insecticidal trait, the crop, the receiving environment, and protection goals were characterized, and a conceptual model was developed to identify routes through which aquatic organisms may be exposed to insecticidal proteins in maize tissue. Following a tiered approach for exposure assessment, worst-case exposures were estimated using standardized models, and factors mitigating exposure were described. Based on exposure estimates, shredders were identified as the functional group most likely to be exposed to insecticidal proteins. However, even using worst-case assumptions, the exposure of shredders to Bt maize was low and studies supporting the current risk assessments were deemed adequate. Determining if early tier toxicity studies are necessary to inform the risk assessment for a specific GM crop should be done on a case by case basis, and should be guided by thorough problem formulation and exposure assessment. The processes used to develop the Bt maize case study are intended to serve as a model for performing risk assessments on future traits and crops.  相似文献   

11.
The Nile catfish, Clarias lazera was found to concentrate radioactive cesium-134 and cobalt-6o from the aquatic environment. For cesium-134 the rate of uptake increased by increase of exposure time, while for cobalt-6o maximum uptake occurred after one day of exposure. The corresponding concentration factors at maximum uptake levels were 0.37 and 0.36 for cesium and cobalt respectively.The internal distribution of these radionuclides in the different tissues and organs of the fish due to uptake from the aquatic environment followed the decreasing order:For 134Cs: muscle, bone, gills, stomach, kidneys, intestine and liver.For 60Co: bone, muscle, gills, intestine, kidneys, stomach and liver.The internal distribution due to ingestion of these radionuclides followed nearly the same order as was found in case of uptake from the aquatic environment.  相似文献   

12.
The potential for unacceptable risks to biota from radiological exposure to depleted uranium (DU) in soils was evaluated at two sites where DU weapons testing had been conducted in the past. A screening risk assessment was conducted to determine if measured concentrations of DU-associated radionuclides in site soils exceed radionuclide levels considered protective of biota. While concentrations of individual radionuclides did not exceed acceptable levels, total radionuclide concentrations could result in potentially unacceptable doses to exposed biota. Thus, a receptor-specific assessment was conducted to estimate external and internal radiological doses to vegetation and wildlife known or expected to occur at the sites. Wildlife evaluated included herbivores, omnivores, and top-level predators. Internal dose estimates to wildlife considered exposure via fugitive dust inhalation and soil and food ingestion; root uptake was the primary exposure route evaluated for vegetation. Total doses were compared with acceptable dose levels of 1.0 and 0.1 rad/day for vegetation and wildlife, respectively, with potentially unacceptable risks indicated for doses exceeding these levels. All estimated doses were below or approximated acceptable levels, typically by an order of magnitude or more. These results indicate that current levels of DU in soils do not pose unacceptable radiological risks to biota at the sites evaluated.  相似文献   

13.
For assessment of external radiation doses to frogs in a wetland area contaminated with 137Cs, frog phantoms were constructed from polymethyl methacrylate (PMMA). The frog phantoms contained thermoluminescence (TL) chips and were used in situ at two study sites to measure doses. To test if higher doses are received by the sensitive skin of frogs, extra-thin TL chips were applied close to the surface of the frog phantoms. In addition, the measured doses were compared with those calculated on the basis of soil sample data from the wetland multiplied with dose-conversion coefficients from the US Department of Energy’s RESRAD-BIOTA code and from the ERICA assessment tool. Measured doses were generally lower than those calculated to ellipsoids used to model frogs. Higher doses were measured at the frog phantoms’ surfaces in comparison to inner parts at one of the two sites indicating that the frogs’ thin skin could receive a higher radiation dose than expected. In the efforts to assure protection of non-human biota, in situ measurements with phantoms provide valuable dose information and input to dose models in site-specific risk assessments of areas contaminated with radionuclides.  相似文献   

14.
The heavy metal mercury is a non-essential hazardous element which concentrates up the food chain. It is necessary to assess the ecological risk of mercury to establish proper regulatory guideline levels. Most of the toxicological assessment of mercury has been focused on aquatic organisms, however in terrestrial bodies the information is limited. Hence this review critically discusses the toxicity of inorganic mercury to key terrestrial biota from recent literature and evaluate whether these information are adequate to establish safe regulatory limits or precautionary values which is invaluable for risk assessment of mercury in soil. Till date soil microorganisms, plants and invertebrates have been utilized for assessing mercury toxicity; among them, microorganisms have been observed to be the most sensitive indicators to mercury stress. Large inconsistency among the measured toxic concentrations indicates that measuring mercury toxicity in soil may be influenced by soil characteristics and ageing period of contamination. This review warrants more studies to obtain widely acceptable safe limit of soil mercury.  相似文献   

15.
The derived specific activities of radionuclides in the soil are calculated for different pathways of the internal irradiation at a level of an effective dose of 1 mSv per year. The ratio of the actual specific activity to its derived specific activity gives a value of the contribution to annual effective dose for the considered irradiation pathway. The results of the work make it possible to find the upper estimation of the effective dose by simple measurements of the exposure dose rate in a soil sample of a given geometry and by rate of pulses counting by beta- and alpha-radiometry of thick soil samples.  相似文献   

16.
There is a scarcity of data on transfer of both natural and anthropogenic radionuclides to detritivorous invertebrates for use in the assessment of radiation exposure. Although mosses and lichens have been extensively used in biomonitoring programs, the data on transfer of radionuclides to these species are limited, particularly for natural radionuclides. To enhance the available data, activity concentrations of 137Cs, 226Ra and 228Ra were measured in ants, mosses and lichens and corresponding undisturbed soil collected from semi-natural ecosystems in Serbia and Montenegro and biota/soil concentration ratios (CR) calculated. Since the majority of internal dose to biota is expected to come from 40K, the activity concentrations of this radionuclide were also determined. The mean CR values for 137Cs, 226Ra and 228Ra in ants analyzed in this study were found to be 0.02, 0.06 and 0.02, respectively. The mean CR values of radionuclides in mosses were found to be 2.84 for 137Cs, 0.19 for 226Ra and 0.16 for 228Ra, while those in lichens were found to be 1.08 for 137Cs, 0.15 for 226Ra and 0.13 for 228Ra. The CR values obtained in this study were compared with default CR values used in the ERICA Tool database and also with those reported in other studies.  相似文献   

17.
We studied three Finnish shooting ranges in order to define the extent of the risks associated with elevated environmental concentrations of metals and PAHs. A scoring system revealed that lead, arsenic, and antimony were the most critical contaminants. On Site 3, the concentration of lead in groundwater exceeded the drinking water standard indicating evident health risks. For the remaining two sites we calculated Acceptable Daily Doses (ADD) based on the Reasonable Maximum Exposure (RME) approach and compared them with safe exposure levels. We also used a pharmacokinetic model to determine blood lead levels (PbBs). Risks to biota were assessed using ecological benchmarks and exposure and accumulation models. Prediction of leaching was based on laboratory tests and a distribution model. The health risk assessment for lead resulted in the maximum hazard quotient (HQ) of 1.2 whereas the HQs of As and Sb remained less than 1. Some exposure scenarios produced PbB estimates exceeding 10 μ g dl?1 but based on the uncertainty analysis we expect the health risks to remain insignificant. However, leaching of contaminants presents a risk to groundwater quality. At site 1 the ecotoxicity-based HQs demonstrate high risks to soil biota, small mammals, terrestrial plants and aquatic organisms.  相似文献   

18.
This article evaluates the health risk raised by exposure to naturally occurring radionuclides in soil around Khak-Sefid, Ramsar, Iran, which is an area of high natural background radiation. A high purity germanium detector was used to determine levels of radionuclides in soil samples and the cancer morbidity risk for a hypothetical resident farmer was evaluated using the RESidual RADioactivity (RESRAD) code. The average activity concentrations of 226Ra, 232Th, and 40K were found to be 13,201 ± 391, 27.9 ± 2.4, and 415.5 ± 16 Bq/kg, respectively. The maximum assessed cancer morbidity risks were calculated from external and internal exposure pathways as 4.73 × 10?2 and 3.40 × 10?2 for 226Ra, 1.41 × 10?4 and 7.88 × 10?5 for 232Th, and 1.3 × 10?4 and 4.233 × 10?4 for 40K. The RESRAD calculations also showed total cancer morbidity risks from external gamma and plant ingestion pathways were more important than from other exposure pathways. A sensitivity analysis was also performed to determine the input parameter values in the risk assessment process. In general, due to the high calculated risk of 226Ra compared with 232Th and 40K it can be the major source of concern for human heath in the study area.  相似文献   

19.
Risk assessment models commonly used in contaminated sites employ a simple integration procedure by only partially combining exposure pathways from surface soil with vapor pathways from subsurface soil being excluded in the combination. The simplified approach can approximate the integrated generic assessment criteria only when there is a dominant exposure pathway. But these models are often based on a simple partitioning of a chemical in soil between the sorbed, dissolved, and vapor phases without consideration of the presence of non-aqueous phase liquid, and critically fail to consider non-soil background exposure for non-carcinogenic compounds. As a result, the generic assessment criteria derived may not be considered protective of human health. This article describes analytical integration procedures for the derivation of the generic assessment criteria that consider non-soil background exposure while limiting the average daily exposure for vapor pathways calculated from soil saturation limits. Significance of consideration of soil saturation limits for the derivation of the generic assessment criteria using an integrated approach is illustrated for organic compounds having varied levels of background exposure and soil saturations. The analytical integration procedures for the derivation of the soil generic assessment criteria under the linear chemical partition approach are also reviewed aiming to provide a single source of complete integration procedures for the derivation of the integrated generic assessment criteria.  相似文献   

20.
The Fukushima Daiichi Nuclear Power Plant accident on March 11, 2011 attracted people’s attention, with anxiety over possible radiation hazards. Immediate and long-term concerns are around protection from external and internal exposure by the liberated radionuclides. In particular, residents living in the affected regions are most concerned about ingesting contaminated foodstuffs, including drinking water. Efficient removal of radionuclides from rainwater and drinking water has been reported using several pot-type filtration devices. A currently used flow-type test apparatus is expected to simultaneously provide radionuclide elimination prior to ingestion and protection from internal exposure by accidental ingestion of radionuclides through the use of a micro-carbon carboxymethyl cartridge unit and an electrochemically reduced water production unit, respectively. However, the removability of radionuclides from contaminated tap water has not been tested to date. Thus, the current research was undertaken to assess the capability of the apparatus to remove radionuclides from artificially contaminated tap water. The results presented here demonstrate that the apparatus can reduce radioactivity levels to below the detection limit in applied tap water containing either 300 Bq/kg of 137Cs or 150 Bq/kg of 125I. The apparatus had a removal efficiency of over 90% for all concentration ranges of radio–cesium and –iodine tested. The results showing efficient radionuclide removability, together with previous studies on molecular hydrogen and platinum nanoparticles as reactive oxygen species scavengers, strongly suggest that the test apparatus has the potential to offer maximum safety against radionuclide-contaminated foodstuffs, including drinking water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号