首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is widely accepted that alterations in vascular shear stress trigger the expression of inflammatory genes in endothelial cells and thereby induce atherosclerosis (reviewed in 1 and 2). The role of shear stress has been extensively studied in vitro investigating the influence of flow dynamics on cultured endothelial cells 1,3,4 and in vivo in larger animals and humans 1,5,6,7,8. However, highly reproducible small animal models allowing systematic investigation of the influence of shear stress on plaque development are rare. Recently, Nam et al. 9 introduced a mouse model in which the ligation of branches of the carotid artery creates a region of low and oscillatory flow. Although this model causes endothelial dysfunction and rapid formation of atherosclerotic lesions in hyperlipidemic mice, it cannot be excluded that the observed inflammatory response is, at least in part, a consequence of endothelial and/or vessel damage due to ligation.In order to avoid such limitations, a shear stress modifying cuff has been developed based upon calculated fluid dynamics, whose cone shaped inner lumen was selected to create defined regions of low, high and oscillatory shear stress within the common carotid artery 10. By applying this model in Apolipoprotein E (ApoE) knockout mice fed a high cholesterol western type diet, vascular lesions develop upstream and downstream from the cuff. Their phenotype is correlated with the regional flow dynamics 11 as confirmed by in vivo Magnetic Resonance Imaging (MRI) 12: Low and laminar shear stress upstream of the cuff causes the formation of extensive plaques of a more vulnerable phenotype, whereas oscillatory shear stress downstream of the cuff induces stable atherosclerotic lesions 11. In those regions of high shear stress and high laminar flow within the cuff, typically no atherosclerotic plaques are observed.In conclusion, the shear stress-modifying cuff procedure is a reliable surgical approach to produce phenotypically different atherosclerotic lesions in ApoE-deficient mice.  相似文献   

2.
Uptake of circulating macromolecules by the arterial wall may be a critical step in atherogenesis. Here we investigate the age-related changes in patterns of uptake that occur in the rabbit. In immature aortas, uptake was elevated in a triangle downstream of branch ostia, a region prone to disease in immature rabbits and children. By 16-22 months, uptake was high lateral to ostia, as is lesion prevalence in mature rabbits and young adults. In older rabbits there was a more upstream pattern, similar to the disease distribution in older people. These variations were predominantly caused by the branches themselves, rather than reflecting larger patterns within which the branches happened to be situated (as may occur with patterns of haemodynamic wall shear stress). The narrow streaks of high uptake reported in some previous studies were shown to be post mortem artefacts. Finally, heparin (which interferes with the NO pathway) had no effect on the difference in uptake between regions upstream and downstream of branches in immature rabbits but reversed the difference in older rabbits, as does inhibiting NO synthesis directly. Nevertheless, examination of uptake all around the branch showed that changes occurred at both ages and that they were quite subtle, potentially explaining why inhibiting NO has only minor effects on lesion patterns in mature rabbits and contradicting the earlier conclusion that mechanotransduction pathways change with age. We suggest that recently-established changes in the patterns of haemodynamic forces themselves are more likely to account for the age-dependence of uptake patterns.  相似文献   

3.
The transport of macromolecules, such as low density lipoproteins (LDLs), across the artery wall and their accumulation in the wall is a key step in atherogenesis. Our objective was to model fluid flow within both the lumen and wall of a constricted, axisymmetric tube simulating a stenosed artery, and to then use this flow pattern to study LDL mass transport from the blood to the artery wall. Coupled analysis of lumenal blood flow and transmural fluid flow was achieved through the solution of Brinkman's model, which is an extension of the Navier-Stokes equations for porous media. This coupled approach offers advantages over traditional analyses of this problem, which have used possibly unrealistic boundary conditions at the blood-wall interface; instead, we prescribe a more natural pressure boundary condition at the adventitial vasa vasorum, and allow variations in wall permeability due to the occurrence of plaque. Numerical complications due to the convection dominated mass transport process (low LDL diffusivity) are handled by the streamline upwind/Petrov-Galerkin (SUPG) finite element method. This new fluid-plus-porous-wall method was implemented for conditions typical of LDL transport in a stenosed artery with a 75 percent area reduction (Peclet number=2 x 10(8)). The results show an elevated LDL concentration at the downstream side of the stenosis. For the higher Darcian wall permeability thought to occur in regions containing atheromatous lesions, this leads to an increased transendothelial LDL flux downstream of the stenosis. Increased transmural filtration in such regions, when coupled with a concentration-dependent endothelial permeability to LDL, could be an important contributor to LDL infiltration into the arterial wall. Experimental work is needed to confirm these results.  相似文献   

4.
The cardiac cycle imposes a mechanical stress that dilates elastic carotid arteries, while shear stress largely contributes to the endothelium-dependent dilation of downstream cerebral arteries. In the presence of dyslipidemia, carotid arteries stiffen while the endothelial function declines. We reasoned that stiffening of carotid arteries would be prevented by reducing resting heart rate (HR), while improving the endothelial function would regulate cerebral artery compliance and function. Thus we treated or not 3-mo-old male atherosclerotic mice (ATX; LDLr(-/-):hApoB(+/+)) for 3 mo with the sinoatrial pacemaker current inhibitor ivabradine (IVA), the β-blocker metoprolol (METO), or subjected mice to voluntary physical training (PT). Arterial (carotid and cerebral artery) compliance and endothelium-dependent flow-mediated cerebral dilation were measured in isolated pressurized arteries. IVA and METO similarly reduced (P < 0.05) 24-h HR by ≈15%, while PT had no impact. As expected, carotid artery stiffness increased (P < 0.05) in ATX mice compared with wild-type mice, while cerebral artery stiffness decreased (P < 0.05); this paradoxical increase in cerebrovascular compliance was associated with endothelial dysfunction and an augmented metalloproteinase-9 (MMP-9) activity (P < 0.05), without changing the lipid composition of the wall. Reducing HR (IVA and METO) limited carotid artery stiffening, but plaque progression was prevented by IVA only. In contrast, IVA maintained and PT improved cerebral endothelial nitric oxide synthase-dependent flow-mediated dilation and wall compliance, and both interventions reduced MMP-9 activity (P < 0.05); METO worsened endothelial dysfunction and compliance and did not reduce MMP-9 activity. In conclusion, HR-dependent mechanical stress contributes to carotid artery wall stiffening in severely dyslipidemic mice while cerebrovascular compliance is mostly regulated by the endothelium.  相似文献   

5.
Cheer AY  Dwyer HA  Barakat AI  Sy E  Bice M 《Biorheology》1998,35(6):415-435
Arterial hemodynamic forces may play a role in the localization of early atherosclerotic lesions. We have been developing numerical techniques based on overset or "Chimera" type formulations to solve the Navier-Stokes equations in complex geometries simulating arterial bifurcations. This paper presents three-dimensional steady flow computations in a model of the rabbit aorto-celiac bifurcation. The computational methods were validated by comparing the numerical results to previously-obtained flow visualization data. Once validated, the numerical algorithms were used to investigate the sensitivity of the computed flow field and resulting wall shear stress distribution to various geometric and hemodynamic parameters. The results demonstrated that a decrease in the extent of aortic taper downstream of the celiac artery induced looping fluid motion along the lateral walls of the aorta and shifted the peak wall shear stress from downstream of the celiac artery to upstream. Increasing the flow Reynolds number led to a sharp increase in spatial gradients of wall shear stress. The flow field was highly sensitive to the flow division ratio, i.e., the fraction of total flow rate that enters the celiac artery, with larger values of this ratio leading to the occurrence of flow separation along the dorsal wall of the aorta. Finally, skewness of the inlet velocity profile had a profound impact on the wall shear stress distribution near the celiac artery. While not physiological due to the assumption of steady flow, these results provide valuable insight into the fluid physics at geometries simulating arterial bifurcations.  相似文献   

6.
We studied the distribution of the early atherosclerotic lesions in the curving sites of the human internal carotid arteries composed of the carotid siphon portion (part I) and carotid canal portion (part II). These early atherosclerotic lesions included a localized cloudy thickening with pallor, slight elevation, a non-fibrotic lesion and gray-white or yellowish-white, firm, elevated fibrous plaques. These lesions had the same pattern-distribution in each curving artery. Both were located in the distal regions from the middle of the inner curvature of parts I and II, where eddying fluid motions and directional change in the wall shear stress were considered to occur. In part I, there was a localized cloudy thickening in the younger subjects (average age: 22.8 years) rather than fibrous plaques (average age: 63.3 years). A positive correlation between the extent of the surface areas involved with fibrous plaques and the age of subjects was found in parts I and II. The extent of the surface areas involved with fibrous plaques was significantly greater in part I (26.9%) than in part II (7.85%). The radius of curvature was shorter in the former than in the latter. These results suggest that hemodynamic factors associated with flow in the curving sites of arteries may be important for the localization and progression of atherosclerotic lesions.  相似文献   

7.
The blood flow dynamics of a stenosed, subject-specific, carotid bifurcation were numerically simulated using the spectral element method. Pulsatile inlet conditions were based on in vivo color Doppler ultrasound measurements of blood velocity. The results demonstrated the transitional or weakly turbulent state of the blood flow, which featured rapid velocity and pressure fluctuations in the post-stenotic region of the internal carotid artery (ICA) during systole and laminar flow during diastole. High-frequency vortex shedding was greatest downstream of the stenosis during the deceleration phase of systole. Velocity fluctuations had a frequency within the audible range of 100-300Hz. Instantaneous wall shear stress (WSS) within the stenosis was relatively high during systole ( approximately 25-45Pa) compared to that in a healthy carotid. In addition, high spatial gradients of WSS were present due to flow separation on the inner wall. Oscillatory flow reversal and low pressure were observed distal to the stenosis in the ICA. This study predicts the complex flow field, the turbulence levels and the distribution of the biomechanical stresses present in vivo within a stenosed carotid artery.  相似文献   

8.
Fluid shear stress and mechanical wall stress may play a role in the formation of early atherosclerotic lesions, but these quantities are difficult to measure in vivo. Our objective was to quantify these parameters in normal subjects in a clinical setting, and to define regions of low wall shear stress and high mechanical stress. The right carotid bifurcations of five healthy male volunteers were investigated using a novel non-invasive technique which integrates magnetic resonance angiography, ultrasonography, tonometry and state-of-the-art computational fluid dynamics and solid mechanics models. Significant inter-subject variations in patterns as well as magnitude of wall shear stress and mechanical stress were found. In spite of individual variabilities, this study revealed that some regions of the artery wall are exposed simultaneously to low wall shear stress and high mechanical stress and that these regions correspond to areas where atherosclerotic plaque develops. The coexistence of regions of low wall shear stress and high tensile stress may be an important determinant of the formation of atheroma in human arteries.  相似文献   

9.
In the present study a two-dimensional finite element model for incompressible Newtonian flow is applicated to the modelling of carotid artery flow. In earlier studies, the numerical model was validated experimentally for several flow configurations. In general the pulsatile flow is characterized by reversed flow regions at the non-divider side walls of both the internal and external carotid arteries. The unsteadiness of the flow is associated with rather complex spatial and temporal velocity distributions and leads to temporal variations of the location and length of the reversed flow regions. As a consequence, pronounced spatial and temporal variations in the wall shear stresses are found. At the non-divider side walls, wall shear stresses are relatively low and exhibits an oscillatory behaviour in space and time. At the divider side walls, wall shear stresses are relatively high and approximately follow the flow rate distribution in time. The aim of this study is not only to present two-dimensional calculations but also to compare the calculated two-dimensional velocity profiles with those from three-dimensional experiments. It is observed that in the common carotid artery and in the proximal parts of the internal and external carotid arteries, the two-dimensional numerical model provides valuable information with respect to the three-dimensional configuration. In the more distal parts of especially the internal carotid artery, deviations are found between the two-dimensional numerical and three-dimensional experimental model. These deviations can mainly be attributed to the neglect of the secondary velocity distribution in the two-dimensional model. In the two-dimensional numerical model the influence of a minor stenosis in the internal carotid artery is hardly distinguishable from a minor geometrical variation without stenosis. Full three-dimensional analyses of the influence of minor stenoses are needed to prove numerically whether in-vivo measurements of the axial velocity distribution are useful in the detection of minor stenoses.  相似文献   

10.
To analyse the pulsatile flow field and the mechanical stresses in a three-dimensional carotid artery bifurcation model, computer simulation is applied. The approximation of the Navier-Stokes equations uses a pressure correction finite element method. Numerical results are presented for axial and secondary flow velocity and wall shear stresses with special emphasis on the fluid dynamics in the carotid sinus. This region is of major interest because it is affected preferentially by lesions. Detailed local flow studies as carried out here should lead to a further insight into the mechanisms of atherogenesis. The flow conditions used in the study were chosen according to Ku et al. (Arteriosclerosis 5, 293-302, 1985). The results of this numerical analysis agree in the essential features with their experimental results.  相似文献   

11.
In children, aortic lipid deposition develops in triangular regions of the wall downstream of branch points, whilst in adults these regions are particularly free of disease. Comparable age-related patterns occur in rabbit aortas. They may be explained by patterns of wall permeability to circulating macromolecules: along the longitudinal midline through branches, permeability is greater downstream than upstream in immature rabbits, but is greater upstream at later ages. Here we have mapped permeability in detail around such branches, not just along the midline. Short-term uptake of rhodamine-labeled albumin, measured using digital imaging fluorescence microscopy of serial sections, was greatest in an approximately triangular region downstream of immature branches, but in mature animals it was greater upstream, particularly away from the midline, and in streaks to the side of branches. Hence the maps are consistent with earlier permeability data and closely resemble the patterns of disease.  相似文献   

12.
Concentration polarization of atherogenic lipids in the arterial system   总被引:2,自引:0,他引:2  
Nomenclature c, Normalized LDL concentration (C*/C0); C0, incoming (bulk) LDL concentration (gr/cm3); Cw, LDL concentration on the luminal surface (gr/cm3); ,wC time average value of LDL concentration on the luminal surface (gr/cm3); D, diffusion coef-ficient of LDL (cm2/s); Q, blood flow rate (mL/s); 0R, average internal radius of the artery (cm); Re, Reynolds number (002/Run); Sc, Schmidt number (/Dn); t, normalized time (00*/tuR); u, normalized axial velocity (0*/uu); 0u, time a…  相似文献   

13.
A two-dimensional (2D) numerical simulation of convective–diffusive transport of LDL in the artery wall, coupled with the wall shear stress gradient (WSSG)-dependent LDL consumption of smooth muscle cells (SMCs) is presented. SMCs are modeled as an array of solid cylindrical pillars embedded in a continuous porous media which represents the interstitial proteoglycan and collagen fiber matrix. The internal elastic lamina (IEL), which separates the artery media from the intima, is modeled as an impermeable barrier to both water and LDL except for the fenestral pores that are assumed to be uniformly distributed over the IEL. The predictions demonstrate a range of interesting features of LDL transport and uptake in the media. For cells immediately below the fenestral pores, LDL uptake of SMCs is highly dependent on WSSG. Moreover, the rate of LDL consumption by SMCs is also affected by the diameter of the fenestral pore. This will be helpful in understanding the involvement of transmural transport processes in the initiation and development of atherosclerosis.  相似文献   

14.
It is well known that atherosclerosis occurs at very specific locations throughout the human vasculature, such as arterial bifurcations and bends, all of which are subjected to low wall shear stress. A key player in the pathology of atherosclerosis is the endothelium, controlling the passage of material to and from the artery wall. Endothelial dysfunction refers to the condition where the normal regulation of processes by the endothelium is diminished. In this paper, the blood flow and transport of the low diffusion coefficient species adenosine triphosphate (ATP) are investigated in a variety of arterial geometries: a bifurcation with varying inner angle, and an artery bend. A mathematical model of endothelial calcium and endothelial nitric oxide synthase cellular dynamics is used to investigate spatial variations in the physiology of the endothelium. This model allows assessment of regions of the artery wall deficient in nitric oxide (NO). The models here aim to determine whether 3D flow fields are important in determining ATP concentration and endothelial function. For ATP transport, the effects of a coronary and carotid wave form on mass transport is investigated for low Womersley number. For the carotid, the Womersley number is then increased to determine whether this is an important factor. The results show that regions of low wall shear stress correspond with regions of impaired endothetial nitric oxide synthase signaling, therefore reduced availability of NO. However, experimental work is required to determine if this level is significant. The results also suggest that bifurcation angle is an important factor and acute angle bifurcations are more susceptible to disease than large angle bifurcations. It has been evidenced that complex 3D flow fields play an important role in determining signaling within endothelial cells. Furthermore, the distribution of ATP in blood is highly dependent on secondary flow features. The models here use ATP concentration simulated under steady conditions. This has been evidenced to reproduce essential features of time-averaged ATP concentration over a cardiac cycle for small Womersley numbers. However, when the Womersley number is increased, some differences are observed. Transient variations are overall insignificant, suggesting that spatial variation is more important than temporal. It has been determined that acute angle bifurcations are potentially more susceptible to atherogenesis and steady-state ATP transport reproduces essential features of time-averaged pulsatile transport for small Womersley number. Larger Womersley numbers appear to be an important factor in time-dependent mass transfer.  相似文献   

15.
Spontaneous dissection of the cervical internal carotid artery (sICAD) is a major cause of stroke in young adults. A tear in the inner part of the vessel wall triggers sICAD as it allows the blood to enter the wall and develop a transmural hematoma. The etiology of the tear is unknown but many patients with sICAD report an initiating trivial trauma. We thus hypothesised that the site of the tear might correspond with the location of maximal stress in the carotid wall. Carotid artery geometries segmented from magnetic resonance images of a healthy subject at different static head positions were used to define a path of motion and deformation of the right cervical internal carotid artery (ICA). Maximum head rotation to the left and rotation to the left combined with hyperextension of the neck were investigated using a structural finite element model. A role of the carotid sinus as a geometrically compliant feature accommodating extension of the artery is shown. At the extreme range of the movements, the geometrical compliance of the carotid sinus is limited and significant stress concentrations appear just distal to the sinus with peak stresses at the internal wall on the posterior side of the vessel following maximum head rotation and on the anteromedial portion of the vessel wall following rotation and hyperextension. Clinically, the location of sICAD initiation is 10–30 mm distal to the origin of the cervical ICA, which corresponds with the peak stress locations observed in the model, thus supporting trivial trauma from natural head movements as a possible initiating factor in sICAD.  相似文献   

16.
We have recently shown that estrogen causes vessel dilation through receptor-mediated stimulation of nitric oxide (NO) production. Here, we hypothesize that estrogen modulates the mechanical homeostasis in the blood vessel wall through NO production. The mechanical properties of female ovariectomized (ovx) mice, female mice lacking the gene for endothelial NO synthase (eNOS(-/-)), and control female and male mice were studied to test the hypothesis. The femoral and carotid arteries and aorta were cannulated in situ and mechanically distended. The stress, strain, elastic modulus, and wall thickness of vessels in ovx and eNOS(-/-) mice, as well as intact female and male mice, were determined. Western blot and immunohistochemistry were used to assess eNOS protein expression in the aorta. Moreover, NO by-products of the femoral and carotid artery were determined by measuring the levels of nitrite and nitrate. Our results show that ovariectomy and eNOS(-/-) significantly decrease the strain in all arteries. Furthermore, the eNOS protein was significantly reduced in ovx mice. Finally, the NO metabolites were significantly decreased both in ovx and eNOS(-/-) mice. We found statistically significant correlations between the structural (wall thickness), mechanical (stress, strain, and elastic modulus), and biochemical parameters (NO by-products). These novel results connect NO to the structural and mechanical properties of the vessel wall. Hence, the effect of endogenous estrogen on the arterial mechanical properties is mediated by the regulation of NO derived from eNOS.  相似文献   

17.
The transport of atherogenic lipids (LDL) in a straight segment of an artery with a semi-permeable wall was simulated numerically. The numerical analysis predicted that a mass transport phenomenon called ’concentration polarization’ of LDL might occur in the arterial system. Under normal physiological flow conditions, the luminal surface LDL concentration was 5%–14% greater than the bulk concentration in a straight segment of an artery. The luminal surface LDL concentration at the arterial wall was flow-dependent, varying linearly with the filtration rate across the arterial wall and inversely with wall shear rate. At low wall shear rate, the luminal surface LDL concentration was very sensitive to changes in flow conditions, decreasing sharply as wall shear rate increased. In order to verify the numerical analysis, the luminal surface concentration of bovine serum albumin (as a tracer macromolecule) in the canine carotid artery was measured in vitro by directly taking liquid samples from the luminal surface of the artery. The experimental result was in very good agreement with the numerical analysis. The authors believe that the mass transport phenomenon of ‘concentration polarization’ may indeed exist in the human circulation and play an important role in the localization of atherosclerosis.  相似文献   

18.
Wall shear has been widely implicated as a contributing factor in the development of intimal hyperplasia in the anastomoses of chronic arterial bypass grafts. Earlier studies have been restricted to either: (1) in vitro or computer simulation models detailing the complex hemodynamics within an anastomosis without corresponding biological responses, or (2) in vivo models that document biological effects with only approximate wall shear information. Recently, a specially designed pulse ultrasonic Doppler wall shear rate (PUDWSR) measuring device has made it possible to obtain three near-wall velocity measurements nonintrusively within 1.05 mm of the vessel luminal surface from which wall shear rates (WSRs) were derived. It was the purpose of this study to evaluate the effect of graft caliber, a surgically controllable variable, upon local hemodynamics, which, in turn, play an important role in the eventual development of anastomotic hyperplasia. Tapered (4-7 mm I.D.) 6-cm-long grafts were implanted bilaterally in an end-to-side fashion with 30 deg proximal and distal anastomoses to bypass occluded common carotid arteries of 16 canines. The bypass grafts were randomly paired in contralateral vessels and placed such that the graft-to-artery diameter ratio, DR, at the distal anastomosis was either 1.0 or 1.5. For all grafts, the average Re was 432 +/- 112 and the average Womersley parameter, alpha, was 3.59 +/- 0.39 based on artery diameter. There was a sharp skewing of flow toward the artery floor with the development of a stagnation point whose position varied with time (up to two artery diameters) and DR (generally more downstream for DR = 1.0). Mean WSRs along the artery floor for DR = 1.0 and 1.5 were found to range sharply from moderate to high retrograde values (589 s-1 and 1558 s-1, respectively) upstream to high antegrade values (2704 s-1 and 2302 s-1, respectively) immediately downstream of the stagnation point. Although there were no overall differences in mean and peak WSRs between groups, there were significant differences (p < 0.05) in oscillatory WSRs as well as in the absolute normalized mean and peak WSRs between groups. There were also significant differences (p < 0.05) in mean and peak WSRs with respect to axial position along the artery floor for both DR cases. In conclusion, WSR varies widely (1558 s-1 retrograde to 2704 s-1 antegrade) within end-to-side distal graft anastomoses, particularly along the artery floor, and may play a role in the development of intimal hyperplasia through local alteration of mass transport and mechano-signal transduction within the endothelium.  相似文献   

19.
Episodic increases in shear stress have been proposed as a mechanism that induces training-induced adaptation in arterial wall remodeling in humans. To address this hypothesis in humans, we examined bilateral brachial artery wall thickness using high-resolution ultrasound in healthy men across an 8-wk period of bilateral handgrip training. Unilaterally, shear rate was attenuated by cuff inflation around the forearm to 60 mmHg. Grip strength, forearm volume, and girth improved similarly between the limbs. Acute bouts of handgrip exercise increased shear rate (P < 0.005) in the noncuffed limb, whereas cuff inflation successfully decreased exercise-induced increases in shear. Brachial blood pressure responses similarly increased during exercise in both the cuffed and noncuffed limbs. Handgrip training had no effect on baseline brachial artery diameter, blood flow, or shear rate but significantly decreased brachial artery wall thickness after 6 and 8 wk (ANOVA, P < 0.001) and wall-to-lumen ratio after week 8 (ANOVA, P = 0.005). The magnitude of decrease in brachial artery wall thickness and wall-to-lumen ratio after exercise training was similar in the noncuffed and cuffed arms. These results suggest that exercise-induced changes in shear rate are not obligatory for arterial wall remodeling during a period of 8 wk of exercise training in healthy humans.  相似文献   

20.
We have recently described patterns of adhesion of different types of leukocytes downstream of a backward facing step. Here the predicted fluid dynamics in channels incorporating backward facing steps are described, and related to the measured velocities of flowing cells, patterns of attachment and characteristics of rolling adhesion for neutrophils perfused over P-selectin. Deeper (upstream depth 300 microm, downstream depth 600 microm, maximum wall shear stress approximately 0.1 Pa) and shallower (upstream depth 260 microm, downstream depth 450 microm, maximum wall shear stress approximately 0.3 Pa) channels were compared. Computational fluid dynamics (CFD) predicted the presence of vortices downstream of the steps, distances to reattachment of flow, local wall shear stresses and components of velocity parallel and perpendicular to the wall. Measurements of velocities of perfused neutrophils agreed well with predictions, and suggested that adhesion to P-selectin should be possible in the regions of recirculating flow, but not downstream in re-established flow in the high shear channel. When channels were coated with a P-selectin-Fc chimaera, neutrophils were captured from flow and immobilised. Capture showed local maxima around the reattachment points, but was absent elsewhere in the high shear chamber. In the low shear chamber there was depression of adhesion just beyond the reattachment point because of expansion of flow and depletion of neutrophils near the wall. Inside the recirculation zones, adhesion decreased approaching the step because of an increasing, vertically upward velocity component. When channels were coated with P-selectin, neutrophils rolled in all regions, but lifted off the surface as they rolled backwards into low shear regions near the step. Rolling velocity in the recirculation zone was independent of shear stress, possibly because of the effects of vertical lift. We conclude that while local wall shear stress influences adhesive behavior, delivery of cells to the wall and their behavior after capture also depend on components of flow perpendicular to the wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号