首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bipolar disorder (BD) is a debilitating mental disorder. However, there are no biomarkers available to support objective laboratory testing for this disorder. Here, a nuclear magnetic resonance spectroscopy-based metabonomic method was used to characterize the urinary metabolic profiling of BD subjects and healthy controls in order to identify and validate urinary metabolite biomarkers for BD. Four metabolites, α-hydroxybutyrate, choline, isobutyrate, and N-methylnicotinamide, were defined as biomarkers. A combined panel of these four urinary metabolites could effectively discriminate between BD subjects and healthy controls, achieving an area under the receiver operating characteristic curve (AUC) of 0.89 in a training set (n = 60 BD patients and n = 62 controls). Moreover, this urinary biomarker panel was capable of discriminating blinded test samples (n = 26 BD patients and n = 34 controls) with an AUC of 0.86. These findings suggest that a urine-based laboratory test using these biomarkers may be useful in the diagnosis of BD.  相似文献   

2.
3.
4.
Gametocytes, the precursor cells of malaria-parasite gametes, circulate in the blood and are responsible for transmission from host to mosquito vector. The individual proteomes of male and female gametocytes were analyzed using mass spectrometry, following separation by flow sorting of transgenic parasites expressing green fluorescent protein, in a sex-specific manner. Promoter tagging in transgenic parasites confirmed the designation of stage and sex specificity of the proteins. The male proteome contained 36% (236 of 650) male-specific and the female proteome 19% (101 of 541) female-specific proteins, but they share only 69 proteins, emphasizing the diverged features of the sexes. Of all the malaria life-cycle stages analyzed, the male gametocyte has the most distinct proteome, containing many proteins involved in flagellar-based motility and rapid genome replication. By identification of gender-specific protein kinases and phosphatases and using targeted gene disruption of two kinases, new sex-specific regulatory pathways were defined.  相似文献   

5.
6.
7.
The influence of olfactory receptor cell (ORC) axons from transsexually grafted antennae on the development of glomeruli in the antennal lobes (ALs), the primary olfactory centers, was studied in the moth Manduca sexta. Normally during metamorphic adult development, the pheromone-specific macroglomerular complex (MGC) forms only in the ALs of males, whereas two lateral female-specific glomeruli (LFGs) develop exclusively in females. A female AL innervated by ORC axons from a grafted male antenna developed an MGC with three glomeruli, like the MGC of a normal male AL. Conversely, a male AL innervated by ORC axons from a grafted female antenna lacked the MGC but exhibited LFGs. ORC axons from grafted male antenna terminated in the MGC-specific target area, even in cases when the antennal nerve (AN) entered the AL via an abnormal route. Within ectopic neuromas formed by ANs that had become misrouted and failed to enter the brain, male-specific axons were not organized and formed terminal branches in many areas. The results suggest the presence of guidance cues within the AL for male-specific ORC axons. Depending on the sex of the antennal innervation, glial borders formed in a pattern characteristic of the MGC or LFGs. The sex-specific number of projection neurons (PNs) in the medial group of AL neurons remained unaffected by the antennal graft, but significant changes occurred in the organization of PN arborizations. In gynandromorphic females, LFG-specific PNs extended processes into the induced MGC, whereas in gynandromorphic males, PNs became restricted to the LFGs. The results indicate that male-and female-specific ORC axons play important roles in determining the position, anatomical features, and innervation of sexually dimorphic glomeruli.  相似文献   

8.
Hughes AL 《Gene》2011,472(1-2):1-6
In Diptera (Insecta), alternatively spliced male-specific and female-specific products of the doublesex (dsx) gene play a key role in regulating development of the adult genital structures from the genital disc. Analysis of the pattern of nucleotide substitution of different domains of the dsx gene in 29 dipteran species showed that, over short evolutionary times, purifying selection predominated on the domain common to both sexes, the female-specific exons, and the and male-specific exon. However, over longer the evolutionary time frames represented by between-family comparisons, the male-specific exon accumulated nonsynonymous substitutions at a much more rapid rate than either the common domain or the female-specific exon. Overall, the accumulation of nonsynonymous substitutions in the male-specific exon occurred at a significantly greater than linear rate relative to the common domain, whereas the accumulation of nonsynonymous substitutions in the female-specific exon occurred at less than linear rate relative to the common domain. The evolution of the male-specific exon of dsx thus shows a pattern reminiscent of that seen in the "runaway" evolution of male secondary sexual characters at the morphological level, consistent with the hypothesis that female choice is an important factor in the morphological diversification of insect male genitalia.  相似文献   

9.
10.
Rat liver cytosolic proteins were photoaffinity labeled with the synthetic steroid [3H]methyltrienolone in order to identify and characterize hepatic proteins that may participate in the intracellular binding and transport of steroid hormones and other sterols. A male-specific and a female-specific sterol-binding protein (SBP) that migrated to the 4 S region of a sucrose gradient and had similar molecular weights (male-specific 34-kDa protein (SBP34), female-specific 31-kDa protein (SBP31] were thus identified. Experiments were undertaken to determine the biochemical basis for the sex-specific expression of these two proteins. In vivo hormonal manipulations established that the female-specific expression of SBP31 could, in part, be accounted for by the suppressive effects of androgen on SBP31 levels in male rats. In contrast, androgen stimulated expression of the male-specific SBP34, while estrogen and the estrogen-regulated continuous plasma growth hormone profile that is characteristic of adult female rats were suppressive toward this protein. Unlike several other androgen-dependent hepatic proteins, however, SBP34 did not require an intact pituitary for androgen-stimulated expression, nor was its expression stimulated by the intermittent pulses of plasma growth hormone that are characteristic of adult male rats. SBP34 and SBP31 were not induced but were suppressed to various extents by dexamethasone, phenobarbital, and clofibrate, drugs that are known to induce other hepatic proteins involved in steroid binding and metabolism. Competition experiments revealed that SBP31 has a relatively broad ligand specificity, with significant competition for [3H]methyltrienolone binding exhibited by bile acids (chenodeoxycholic acid and lithocholic acid) and a range of steroid hormones (progesterone, estradiol, testosterone, and 5 alpha-dihydrotestosterone) when present in the low micromolar range. No binding was detected with this protein toward cholesterol, triamcinolone acetonide, 5 alpha-androstan-3 alpha,17 beta-diol, cholic acid, and deoxycholic acid. In contrast, SBP34 exhibited greater binding specificity, with competition for [3H]methyltrienolone binding observed only with primary bile acids (cholic acid and chenodeoxycholic acid) and their metabolites (deoxycholic acid and lithocholic acid). On the basis of these binding specificities and the relatively high concentration of bile acids found in the liver, it is proposed that SBP31 and SBP34 function in the intracellular binding and/or transport of bile acids.  相似文献   

11.
The Bombyx mori homolog of doublesex, Bmdsx, plays an essential role in silkworm sexual development. Exons 3 and 4 of Bmdsx pre-mRNA are specifically excluded in males. To explore how this occurs, we developed a novel in vivo sex-specific splicing assay system using sexually differentiated cultured cells. A series of mutation analyses using a Bmdsx minigene with this in vivo splicing assay system identified three distinct sequences (CE1, CE2, and CE3) positioned in exon 4 as exonic splicing silencers responsible for male-specific splicing. Gel shift analysis showed that CE1 binds to a nuclear protein from male cells but not that from female cells. Mutation of UAA repeats within CE1 inhibited the binding of the nuclear protein to the RNA and caused female-specific splicing in male cells. We have identified BmPSI, a Bombyx homolog of P-element somatic inhibitor (PSI), as the nuclear factor that specifically binds CE1. Down-regulation of endogenous BmPSI by RNA interference significantly increased female-specific splicing in male cells. This is the first report of a PSI homolog implicated in the regulated sex-specific splicing of dsx pre-mRNA.  相似文献   

12.
FDA-cleared ovarian cancer biomarkers are limited to CA-125 and HE4 for monitoring and recurrence and OVA1, a multivariate panel consisting of CA-125 and four additional biomarkers, for referring patients to a specialist. Due to relatively poor performance of these tests, more accurate and broadly applicable biomarkers are needed. We evaluated the dysregulation of 259 candidate cancer markers in serum samples from 499 patients. Sera were collected prospectively at 11 monitored sites under a single well-defined protocol. All stages of ovarian cancer and common benign gynecological conditions were represented. To ensure consistency and comparability of biomarker comparisons, all measurements were performed on a single platform, at a single site, using a panel of rigorously calibrated, qualified, high-throughput, multiplexed immunoassays and all analyses were conducted using the same software. Each marker was evaluated independently for its ability to differentiate ovarian cancer from benign conditions. A total of 175 markers were dysregulated in the cancer samples. HE4 (AUC=0.933) and CA-125 (AUC=0.907) were the most informative biomarkers, followed by IL-2 receptor α, α1-antitrypsin, C-reactive protein, YKL-40, cellular fibronectin, CA-72-4 and prostasin (AUC>0.800). To improve the discrimination between cancer and benign conditions, a simple multivariate combination of markers was explored using logistic regression. When combined into a single panel, the nine most informative individual biomarkers yielded an AUC value of 0.950, significantly higher than obtained when combining the markers in the OVA1 panel (AUC 0.912). Additionally, at a threshold sensitivity of 90%, the combination of the top 9 markers gave 88.9% specificity compared to 63.4% specificity for the OVA1 markers. Although a blinded validation study has not yet been performed, these results indicate that alternative biomarker combinations might lead to significant improvements in the detection of ovarian cancer.  相似文献   

13.
Circulating microRNAs are deregulated in liver fibrosis and hepatocellular carcinoma (HCC) and are candidate biomarkers. This study investigated the potential of serum microRNAs; miR-19a, miR-296, miR-130a, miR-195, miR-192, miR-34a, and miR-146a as early diagnostic biomarkers for hepatitis C virus (HCV)-related HCC. As how these microRNAs change during liver fibrosis progression is not clear, we explored their serum levels during fibrosis progression in HCV-associated chronic liver disease (CLD) and if they could serve as non-invasive biomarkers for fibrosis progression to HCC. 112 Egyptian HCV-HCC patients, 125 non-malignant HCV-CLD patients, and 42 healthy controls were included. CLD patients were subdivided according to Metavir fibrosis-scoring. Serum microRNAs were measured by qRT-PCR custom array. Serum microRNAs were deregulated in HCC versus controls, and except miR-130a, they were differentially expressed between HCC and CLD or late fibrosis (F3-F4) subgroup. Serum microRNAs were not significantly different between individual fibrosis-stages or between F1-F2 (early/moderate fibrosis) and F3-F4. Only miR-19a was significantly downregulated from liver fibrosis (F1-F3) to cirrhosis (F4) to HCC. Individual microRNAs discriminated HCC from controls, and except miR-130a, they distinguished HCC from CLD or F3-F4 patients by receiver-operating-characteristic analysis. Multivariate logistic analysis revealed a panel of four microRNAs (miR-19a, miR-195, miR-192, and miR-146a) with high diagnostic accuracy for HCC (AUC = 0.946). The microRNA panel also discriminated HCC from controls (AUC = 0.949), CLD (AUC = 0.945), and F3-F4 (AUC = 0.955). Studied microRNAs were positively correlated in HCC group. miR-19a and miR-34a were correlated with portal vein thrombosis and HCC staging scores, respectively. In conclusion, studied microRNAs, but not miR-130a, could serve as potential early biomarkers for HCC in high-risk groups, with miR-19a as a biomarker for liver fibrosis progression to cirrhosis to HCC. We identified a panel of four serum microRNAs with high accuracy in HCC diagnosis. Additional studies are required to confirm this panel and test its prognostic significance.  相似文献   

14.
15.
Recent studies suggest that periodontal disease and type 2 diabetes mellitus are bi-directionally associated. Identification of a molecular signature for periodontitis using unbiased metabolic profiling could allow identification of biomarkers to assist in the diagnosis and monitoring of both diabetes and periodontal disease. This cross-sectional study identified plasma and salivary metabolic products associated with periodontitis and/or diabetes in order to discover biomarkers that may differentiate or demonstrate an interaction of these diseases. Saliva and plasma samples were analyzed from 161 diabetic and non-diabetic human subjects with a healthy periodontium, gingivitis and periodontitis. Metabolite profiling was performed using Metabolon''s platform technology. A total of 772 metabolites were found in plasma and 475 in saliva. Diabetics had significantly higher levels of glucose and α-hydroxybutyrate, the established markers of diabetes, for all periodontal groups of subjects. Comparison of healthy, gingivitis and periodontitis saliva samples within the non-diabetic group confirmed findings from previous studies that included increased levels of markers of cellular energetic stress, increased purine degradation and glutathione metabolism through increased levels of oxidized glutathione and cysteine-glutathione disulfide, markers of oxidative stress, including increased purine degradation metabolites (e.g. guanosine and inosine), increased amino acid levels suggesting protein degradation, and increased ω-3 (docosapentaenoate) and ω-6 fatty acid (linoleate and arachidonate) signatures. Differences in saliva between diabetic and non-diabetic cohorts showed altered signatures of carbohydrate, lipid and oxidative stress exist in the diabetic samples. Global untargeted metabolic profiling of human saliva in diabetics replicated the metabolite signature of periodontal disease progression in non-diabetic patients and revealed unique metabolic signatures associated with periodontal disease in diabetics. The metabolites identified in this study that discriminated the periodontal groups may be useful for developing diagnostics and therapeutics tailored to the diabetic population.  相似文献   

16.
A cell-free translation system was programmed with total, poly(A), non poly(A) and polysomal RNAs from male and female flowers of this plant with separated sexes. The peptide patterns obtained reflected differences in corresponding translatable RNAs. In total RNA products, three peptides were specific for males, two for females. One of the two male-specific polypeptides of high molecular weight was obtained from poly(A) RNAs and a female-specific one from non poly(A) RNAs. Differences between peptides common to both sexes reflected different concentrations of corresponding messengers. Similar results were obtained with polysomal RNAs. The male-specific RNAs were depending on high endogenous auxin concentrations while the female on active cytokinins. Cytokinin feminization of males induced the female-specific RNAs showing cytokinin action at pretranslational stages. Phytohormone roles are discussed.  相似文献   

17.
Tribolium castaneum Transformer (TcTra) is essential for female sex determination and maintenance through the regulation of sex-specific splicing of doublesex (dsx) pre-mRNA. In females, TcTra also regulates the sex-specific splicing of its own pre-mRNA to ensure continuous production of functional Tra protein. Transformer protein is absent in males and hence dsx pre-mRNA is spliced in a default mode. The mechanisms by which males inhibit the production of functional Tra protein are not known. Here, we report on functional characterization of transformer-2 (tra-2) gene (an ortholog of Drosophila transformer-2) in T. castaneum. RNA interference-mediated knockdown in the expression of gene coding for tra-2 in female pupae or adults resulted in the production of male-specific isoform of dsx and both female and male isoforms of tra suggesting that Tra-2 is essential for the female-specific splicing of tra and dsx pre-mRNAs. Interestingly, knockdown of tra-2 in males did not affect the splicing of dsx but resulted in the production of both female and male isoforms of tra suggesting that Tra-2 suppresses female-specific splicing of tra pre-mRNA in males. This dual regulation of sex-specific splicing of tra pre-mRNA ensures a tight regulation of sex determination and maintenance. These data suggest a critical role for Tra-2 in suppression of female sex determination cascade in males. In addition, RNAi studies showed that Tra-2 is also required for successful embryonic and larval development in both sexes.  相似文献   

18.
The liverwort Marchantia polymorpha has X and Y chromosomes in the respective female and male haploids. Here we report the successful exploitation of representational difference analyses to isolate DNA markers for the sex chromosomes. Two female-specific and six male-specific DNA fragments were genetically confirmed to originate from the X and Y chromosomes, respectively.  相似文献   

19.
Fujii S  Amrein H 《The EMBO journal》2002,21(20):5353-5363
The downstream effectors of the Drosophila sex determination cascade are mostly unknown and thought to mediate all aspects of sexual differentiation, physiology and behavior. Here, we employed serial analysis of gene expression (SAGE) to identify male and female effectors expressed in the head, and report 46 sex-biased genes (>4-fold/P < 0.01). We characterized four novel, male- or female-specific genes and found that all are expressed mainly in the fat cells in the head. Tsx (turn on sex-specificity), sxe1 and sxe2 (sex-specific enzyme 1/2) are expressed in males, but not females, and are dependent on the known sex determination pathway, specifically transformer (tra) and its downstream target doublesex (dsx). Female-specific expression of the fourth gene, fit (female-specific independent of transformer), is not controlled by tra and dsx, suggesting an alternative pathway for the regulation of some effector genes. Our results indicate that fat cells in the head express sex-specific effectors, thereby generating distinct physiological conditions in the male and female head. We suggest that these differences have consequences on the male and female brain by modulating sex-specific neuronal processes.  相似文献   

20.
B. J. Taylor 《Genetics》1992,132(1):179-191
A pair of muscles span the fifth abdominal segment of male but not female Drosophila melanogaster adults. To establish whether genes involved in the development of other sexually dimorphic tissues controlled the differentiation of sex-specific muscles, flies mutant for five known sex-determining genes were examined for the occurrence of male-specific abdominal muscles. Female flies mutant for alleles of Sex-lethal, defective in sex determination, or null alleles of transformer or transformer-2 are converted into phenotypic males that formed male-specific abdominal muscles. Both male and female flies, when mutant for null alleles of doublesex, develop as nearly identical intersexes in other somatic characteristics. Male doublesex flies produced the male-specific muscles, whereas female doublesex flies lacked them. Female flies, even when they inappropriately expressed the male-specific form of doublesex mRNA, failed to produce the male-specific muscles. Therefore, the wild-type products of the genes Sex-lethal, transformer and transformer-2 act to prevent the differentiation of male-specific muscles in female flies. However, there is no role for the genes doublesex or intersex in either the generation of the male-specific muscles in males or their suppression in females.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号