首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The role of abscisic acid (ABA) in drought tolerance of Coffea canephora is unknown. To determine whether ABA is associated with drought tolerance and if the use of tolerant rootstocks could increase ABA and drought tolerance, we performed reciprocal grafting experiments between clones with contrasting tolerance to drought (clone 109, sensitive; and clone 120, tolerant). Plants were grown in large (120 L) pots in a greenhouse and subjected to drought stress by withholding irrigation. The non-grafted 120 plants and graft treatments with 120 as a rootstock showed a slower reduction of predawn leaf water potential (Ψpd) and a lower negative carbon isotopic composition ratio compared with the other grafting combinations in response to drought. The same 120 graft treatments also showed higher leaf ABA concentrations, lower levels of electrolyte leakage, and lower activities of ascorbate peroxidase and catalase under moderate (Ψpd?=???1.0 or ??1.5 MPa) and severe (Ψpd?=???3.0 MPa) drought. Root ABA concentrations were higher in plants with the 120 rootstocks regardless of watering regime. The 120 shoots could also contribute to drought tolerance because treatment with 120/109 rootstock/scion combination showed postponed dehydration, higher leaf ABA concentration, and lower leaf electrolyte leakage compared with the sensitive clone. We conclude that both the shoot and root systems of the tolerant clone can increase the concentrations of ABA in leaves in response to drought. This further suggests that ABA is associated with a delayed onset of severe water deficit and decreased oxidative damage in C. canephora.  相似文献   

3.
4.
5.
6.
The rootstock effect on the fruit yield of a grafted tomato variety was genetically analyzed under salinity using as rootstock two populations of F(9) lines developed from a salt sensitive genotype of Solanum lycopersicum var. cerasiforme, as female parent, and two salt tolerant lines, as male parents, from S. pimpinellifolium, the P population (123 lines), and S. cheesmaniae, the C population (100 lines). There were rootstock lines from the two populations (up to 65% in the P population) that raised the fruit yield of the commercial hybrid under saline conditions. It is shown that this salt tolerance rootstock effect is a heritable trait (h (2) near 0.3), governed by at least eight QTLs. The most relevant component was the number of fruits. Thus most detected QTLs correspond to this component. In general, QTL gene effects are medium-sized, with contributions from 8.5 up to 15.9% at most, and the advantageous allele comes from the wild, salt tolerant species. Only two fruit yield QTLs on chromosomes P9 and C11 might correspond to fruit yield QTLs of the non-grafted lines indicating their root system dependence. A fruit yield QTL on chromosome 3 is acting epistatically in both populations. The epistatic interactions found were dominant and they were unveiled using the associated marker as cofactor in the composite interval mapping methodology. Therefore, an efficient and profitable utilization of wild germplasm can be carried out through the improvement of rootstocks that confer salt tolerance in terms of fruit yield to the grafted variety.  相似文献   

7.
刘慧敏  朱月林  陈磊 《植物研究》2007,27(2):175-181
采用组培的方法,对15个番茄普通栽培品种的幼苗进行系列浓度Ca(NO3)2胁迫处理,10 d后调查不同品种单株幼苗的生长情况和盐害程度。结果表明,15个供试品种幼苗期硝酸盐耐性存在显著差异。上海903、苏红2003、阳光906、大禹中蔬4号、三星L402、番茄大红、中蔬4号、宝大903、霞粉、毛粉 802为硝酸盐敏感品种;早丰番茄、江蔬14号、宝粉和三星906为中等耐硝酸盐品种;日本大粉皇后为耐硝酸盐品种。同时对7个番茄砧木自交系(TR-1、TR-2、TR-3、TR-4、TR-5、TR-7、TR-8)进行了幼苗期高浓度Ca(NO3)2的耐盐分析。结果表明,砧木自交系的平均侧根数均显著高于同浓度下供试的普通番茄栽培品种,盐胁迫指数均显著低于普通栽培品种,具有较强的耐盐性;其中TR-8耐盐性最强。  相似文献   

8.
In the present work the effects on dough quality by the down-regulation of γ-gliadins in different genetic backgrounds of bread wheat were investigated. RNAi-mediated silencing of γ-gliadins was introgressed by conventional crossing into three commercial bread wheat lines (namely ‘Gazul’, ‘Podenco’ and ‘Arpain’), and along with the transgenic line A1152 (cv. Bobwhite) compared with their respective wild types. The protein fractions were quantified by RP-HPLC, whereas the technological and mixing properties were assessed by SDSS test and by the Mixograph instrument. Principal component analysis (PCA) was carried out for both the wild types and the transgenic lines, showing differences in the factors affecting the technological and mixing properties of the dough as a consequence of the reduction of the γ-gliadins. In transgenic lines, the α- and ω-gliadins, and total gliadins negatively affected the dough strength and tolerance to over-mixing, whereas the L/H ratio showed the opposite effect, positively influencing the dough quality. The increase of the SDSS volume in the transgenic lines of ‘Gazul’, ‘Podenco’ and ‘Arpain’ indicates increased gluten strength and quality respect to the wild types. SDSS volume was found to be positively influenced by the amount of glutenins, which were also increased in the transgenic lines. In addition, a positive effect was observed in the MT, PR1 and RBD in some of the transgenic lines of ‘Podenco’ and ‘Arpain’. In conclusion, the down-regulation of γ-gliadins resulted in stronger doughs and a better tolerance to over-mixing in some transgenic lines. Although the reduction of γ-gliadins seems not to have a direct effect on the mixing and bread-making properties, the compensatory effect on the synthesis of the other prolamins may result in stronger doughs with improved over-mixing resistance.  相似文献   

9.
Meloidogyne mayaguensis is a damaging root-knot nematode able to reproduce on root-knot nematode-resistant tomato and other economically important crops. In a growth chamber experiment conducted at 22 and 33°C, isolate 1 of M. mayaguensis reproduced at both temperatures on the Mi-1-carrying tomato lines BHN 543 and BHN 585, whereas M. incognita race 4 failed to reproduce at 22°C, but reproduced well at 33°C. These results were confirmed in another experiment at 26 ± 1.8°C, where minimal or no reproduction of M. incognita race 4 was observed on the Mi-1-carrying tomato genotypes BHN 543, BHN 585, BHN 586 and ‘Sanibel’, whereas heavy infection and reproduction of M. mayaguensis isolate 1 occurred on these four genotypes. Seven additional Florida M. mayaguensis isolates also reproduced on resistant ‘Sanibel’ tomato at 26 ± 1.8°C. Isolate 3 was the most virulent, with reproduction factor (Rf) equal to 8.4, and isolate 8 was the least virulent (Rf = 2.1). At 24°C, isolate 1 of M. mayaguensis also reproduced well (Rf ≥ 1) and induced numerous small galls and large egg masses on the roots of root-knot nematode-resistant bell pepper ‘Charleston Belle’ carrying the N gene and on three root-knot nematode-resistant sweet pepper lines (9913/2, SAIS 97.9001 and SAIS 97.9008) carrying the Tabasco gene. In contrast, M. incognita race 4 failed to reproduce or reproduced poorly on these resistant pepper genotypes. The ability of M. mayaguensis isolates to overcome the resistance of tomato and pepper genotypes carrying the Mi-1, N and Tabasco genes limits the use of resistant cultivars to manage this nematode species in infested tomato and pepper fields in Florida.  相似文献   

10.
11.
With the aim of determining whether grafting could improve salinity tolerance of tomato (Lycopersicon esculentum Mill.), and what characteristics of the rootstock were required to increase the salt tolerance of the shoot, a commercial tomato hybrid (cv. Jaguar) was grafted onto the roots of several tomato genotypes with different potentials to exclude saline ions. The rootstock effect was assessed by growing plants at different NaCl concentrations (0, 25, 50, and 75 mM NaCl) under greenhouse conditions, and by determining the fruit yield and the leaf physiological changes induced by the rootstock after 60 d and 90 d of salt treatment. The grafting process itself did not affect the fruit yield, as non-grafted plants of cv. Jaguar and those grafted onto their own root showed the same yield over time under non-saline conditions. However, grafting raised fruit yield in Jaguar on most rootstocks, although the positive effect induced by the rootstock was lower at 25 mM NaCl than at 50 and 75 mM NaCl. At these higher levels, the plants grafted onto Radja, Pera and the hybrid VolgogradskijxPera increased their yields by approximately 80%, with respect to the Jaguar plants. The tolerance induced by the rootstock in the shoot was related to ionic rather than osmotic stress caused by salinity, as the differential fruit yield responses among graft combinations were mainly related to the different abilities of rootstocks to regulate the transport of saline ions. This was corroborated by the high negative correlation found between fruit yield and the leaf Na(+) or Cl(-) concentrations in salt-treated plants after 90 d of salt treatment. In conclusion, grafting provides an alternative way to enhance salt tolerance, determined as fruit yield, in the tomato, and evidence is reported that the rootstock is able to reduce ionic stress.  相似文献   

12.
Tolerance of salt stress in potato (Solanum tuberosum L.) increased when the plants were pre-exposed to low concentrations of salt (salt acclimation). This acclimation was accompanied by increased levels of abscisic acid (ABA) in the shoot. To further study the role of roots and shoots in this acclimation process, reciprocal grafts were made between a salt-tolerant (9506) and salt-sensitive ABA(−) mutant and its ABA(+) normal sibling potato genotype. The grafted plants were acclimated with 75 or 100 mM NaCl for 3 weeks and then exposed to 150–180 mM NaCl, depending on the salt tolerance of the rootstock. After 2 weeks of exposure to the salt stress, the acclimated and unacclimated plants were compared for physiologic and morphologic parameters. The response to the salt stress was strongly influenced by the rootstock. The salt-tolerant 9506 rootstock increased the salt tolerance of scions of both the ABA-deficient mutant and its ABA(+) sibling. This salt tolerance induced by the rootstock was primarily modulated by salt acclimation and manifested in the scion via increased plant water content, stem diameter, dry matter accumulation, stomatal conductivity, and osmotic potential, and is associated with a reduction in leaf necrosis. There was also a pronounced scion effect on the rootstock. Using 9506 as a scion significantly increased root fresh and dry weights, stem diameter, and root water content of ABA(−) mutant rootstocks. Specific evidence was found of the role of exogenous ABA in the enhancement of water status in grafted plants under salt stress beyond that of grafting alone. This was verified by more positive stomatal conductivity and upward water flow in ABA-treated grafted and nongrafted plants and the absence of upward water flow in nontreated grafted plants through NMR imaging. Grafting using either salt-tolerant scions or rootstocks with inherently high ABA levels may positively modify subsequent responses of the plant under salt stress.  相似文献   

13.
Cacao (Theobroma cacao L.) is one of the most important perennial crops in the world. In Brazil, the decrease in production in the last 25 years was caused by the entry and dissemination of witches’ broom (WB) (Moniliophthora perniciosa Aime & Phillips-Mora) in the cacao region of Bahia, the main producing region of the country. This disease increases costs and reduces crop yields. The main objective of this study was to evaluate interactions between scion and rootstocks for WB resistance through gas exchange and chlorophyll fluorescence measurements, determinations of the activity of enzymes involved in the antioxidant metabolism and of macro and micronutrient concentration at the leaf level. The experiment was conducted under greenhouse conditions using two cacao clones as rootstock, a tolerant (SCA-6) and a susceptible (SIC-876) to WB and CCN-51 as scion, a reference material due to tolerance to the disease, good productivity and high beans butter concentration. No grafted plants of SCA-6, SIC-876 and CCN-51 were used as controls. Were observed either in the grafted and non-grafted genotypes that M. perniciosa infection provoked alterations in the photochemical and biochemical phases of photosynthesis, in activity of enzymes involved in the antioxidant metabolism and in macro and micronutrients concentrations. It was concluded that interactions between scion and rootstock in T. cacao made the scion more tolerant to M. perniciosa infection. SIC-876 rootstock, considered susceptible to WB, had a positive effect on the performance of CCN-51 graft with respect to tolerance to the disease. The higher tolerance of CCN-51 graft to WB, provided by the SIC-876 rootstock, was helped by the increased activity of ascorbate and guaiacol peroxidases, enzymes involved in the antioxidant metabolism.  相似文献   

14.
Understanding rooting dynamics using the minirhizotron technique is useful for cultivar selection and to quantify nematode damage to roots. A 2-yr microplot study including five bermudagrass (‘Tifway’, Belonolaimus longicaudatus susceptible; two commercial cultivars [TifSport and Celebration] and two genotypes [‘BA132’ and ‘PI 291590’], which have been reported to be tolerant to B. longicaudatus) and two St. Augustinegrass (‘FX 313’, susceptible, and ‘Floratam’ that was reported as tolerant to B. longicaudatus) genotypes in a 5 x 2 and 2 x 2 factorial design with four replications, respectively, was initiated in 2012. Two treatments included were uninoculated and B. longicaudatus inoculated. In situ root images were captured each month using a minirhizotron camera system from April to September of 2013 and 2014. Mixed models analysis and comparison of least squares means indicated significant differences in root parameters studied across the genotypes and soil depths of both grass species. ‘Celebration’, ‘TifSport’ and ‘PI 291590’ bermudagrass, and ‘Floratam’ St. Augustinegrass had significantly different root parameters compared to the corresponding susceptible genotypes (P ≤ 0.05). Only ‘TifSport’ had no significant root loss when infested with B. longicaudatus compared to non-infested. ‘Celebration’ and ‘PI 291590’ had significant root loss but retained significantly greater root densities than ‘Tifway’ in B. longicaudatus-infested conditions (P ≤ 0.05). Root lengths were greater at the 0 to 5 cm depth followed by 5 to 10 and 10 to 15 cm of vertical soil depth for both grass species (P ≤ 0.05). ‘Celebration’, ‘TifSport’, and ‘PI 291590’ had better root vigor against B. longicaudatus compared to Tifway.  相似文献   

15.

Background

Rootstocks play an essential role to determining orchard performance of fruit trees. Pyrus communis and Cydonia oblonga are widely used rootstocks for European pear cultivars. The lack of rootstocks adapted to different soil conditions and different grafted cultivars is widely acknowledged in pear culture. Cydonia rootstocks (clonal) and Pyrus rootstocks (seedling or clonal) have their advantages and disadvantages. In each case, site-specific environmental characteristics, specific cultivar response and production objectives must be considered before choosing the best rootstock. In this study, the influence of three Quince (BA 29, Quince A = MA, Quince C = MC) and a local European pear seedling rootstocks on the scion yield, some fruit quality characteristics and leaf macro (N, P, K, Ca and Mg) and micro element (Fe, Zn, Cu, Mn and B) content of ‘Santa Maria’ pear (Pyrus communis L.) were investigated.

Results

Trees on seedling rootstock had the highest annual yield, highest cumulative yield (kg tree−1), largest trunk cross-sectional area (TCSA), lowest yield efficiency and lowest cumulative yield (ton ha−1) in the 10th year after planting. The rootstocks had no significant effect on average fruit weight and fruit volume. Significantly higher fruit firmness was obtained on BA 29 and Quince A. The effect of rootstocks on the mineral element accumulation (N, K, Ca, Mg, Fe, Zn, Cu, Mn and B) was significant. Leaf analysis showed that rootstocks used had different mineral uptake efficiencies throughout the early season.

Conclusion

The results showed that the rootstocks strongly affected fruit yield, fruit quality and leaf mineral element uptake of ‘Santa Maria’ pear cultivar. Pear seedling and BA 29 rootstock found to be more prominent in terms of several characteristics for ‘Santa Maria’ pear cultivar that is grown in highly calcareous soil in semi-arid climate conditions. We determined the highest N, P (although insignificant), K, Ca, Mg, Fe and Cu mineral element concentrations on the pear seedling and BA 29 rootstocks. According to the results, we recommend the seedling rootstock for normal density plantings (400 trees ha−1) and BA 29 rootstock for high-density plantings (800 trees ha−1) for ‘Santa Maria’ pear cultivar in semi-arid conditions.  相似文献   

16.
Grafting desirable crop varieties on stress-tolerant rootstocks provides an opportunity to increase crop salt tolerance. Here, a commercial hybrid tomato variety was grafted on two populations of recombinant inbred lines developed from a salt-sensitive genotype of Solanum lycopersicum var. cerasiforme, as female parent, and two salt-tolerant lines, as male parents, from S. pimpinellifolium, the P population, and S. cheesmaniae, the C population, to identify an easy screening method for identifying rootstocks conferring salt tolerance in terms of fruit yield. Potential physiological components of salt tolerance were assessed in the scion: leaf biomass, [Na+], nutrition, water relations and xylem ABA concentration. A significant correlation between scion fruit yield and scion leaf fresh weight, water potential or the ABA concentration was found in the C population under salinity, but the only detected QTL did not support this relationship. The rootstocks of the P population clearly affected seven traits related to the sodium, phosphorous and copper concentrations and water content of the scion leaf, showing heritability estimates around 0.4 or higher. According to heritability estimates in the P population, up to five QTLs were detected per trait. QTLs contributing over 15% to the total variance were found for P and Cu concentrations and water content of the scion leaf, and the proportion of fresh root weight. Correlation and QTL analysis suggests that rootstock-mediated improvement of fruit yield in the P population under salinity is mainly explained by the rootstock’s ability to minimise perturbations in scion water status.  相似文献   

17.
18.
19.
20.
DNA methylation has been referred as an important player in plant genomic responses to environmental stresses but correlations between the methylome plasticity and specific traits of interest are still far from being understood. In this study, we inspected global DNA methylation levels in salt tolerant and sensitive rice varieties upon salt stress imposition. Global DNA methylation was quantified using the 5-methylcytosine (5mC) antibody and an ELISA-based technique, which is an affordable and quite pioneer assay in plants, and in situ imaging of methylation sites in interphase nuclei of tissue sections. Variations of global DNA methylation levels in response to salt stress were tissue- and genotype-dependent. We show a connection between a higher ability of DNA methylation adjustment levels and salt stress tolerance. The salt-tolerant rice variety Pokkali was remarkable in its ability to quickly relax DNA methylation in response to salt stress. In spite of the same tendency for reduction of global methylation under salinity, in the salt-sensitive rice variety IR29 such reduction was not statistically supported. In ‘Pokkali’, the salt stress-induced demethylation may be linked to active demethylation due to increased expression of DNA demethylases under salt stress. In ‘IR29’, the induction of both DNA demethylases and methyltransferases may explain the lower plasticity of DNA methylation. We further show that mutations for epigenetic regulators affected specific phenotypic parameters related to salinity tolerance, such as the root length and biomass. This work emphasizes the role of differential methylome flexibility between salt tolerant and salt sensitive rice varieties as an important player in salt stress tolerance, reinforcing the need to better understand the connection between epigenetic networks and plant responses to environmental stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号