共查询到20条相似文献,搜索用时 29 毫秒
1.
《Autophagy》2013,9(4):435-441
The elimination of tumour cells by apoptosis is the main mechanism of action of chemotherapeutic drugs. More recently, autophagic cell death has been shown to trigger a nonapoptotic cell death program in cancer cells displying functional defects of caspases. Fenretinide (FenR), a synthetic derivative of retinoic acid, promotes growth inhibition and induces apoptosis in a wide range of tumour cell types. The present study was designed to evaluate the ability of fenretinide to induce caspase-independent cell death and to this aim we used the human mammary carcinoma cell line MCF-7, lacking functional caspase-3 activity. We demonstrated that in these cells fenretinide is able to trigger an autophagic cell death pathway. In particular we found that fenretinide treatment resulted in the increase in Beclin 1 expression, the conversion of the soluble form of LC3 to the autophagic vesicle-associated form LC3-II and its shift from diffuse to punctate staining and finally the increase in lysosomes/autophagosomes. By contrast, caspase-3 reconstituted MCF-7 cell line showed apoptotic cell death features in response to fenretinide treatment. These data strongly suggest that fenretinide does not invariably elicit an apoptotic response but it is able to induce autophagy when apoptotic pathway is deregulated. The understanding of the molecular mechanisms involved in fenretinide action is important for the future design of therapies employing this retinoid in breast cancer treatment. 相似文献
2.
The elimination of tumor cells by apoptosis is the main mechanism of action of chemotherapeutic drugs. More recently, autophagic cell death has been shown to trigger a nonapoptotic cell death program in cancer cells displaying functional defects of caspases. Fenretinide (FenR), a synthetic derivative of retinoic acid, promotes growth inhibition and induces apoptosis in a wide range of tumor cell types. The present study was designed to evaluate the ability of fenretinide to induce caspase-independent cell death and to this aim we used the human mammary carcinoma cell line MCF-7, lacking functional caspase-3 activity. We demonstrated that in these cells fenretinide is able to trigger an autophagic cell death pathway. In particular we found that fenretinide treatment resulted in the increase in Beclin 1 expression, the conversion of the soluble form of LC3 to the autophagic vesicle-associated form LC3-II and its shift from diffuse to punctate staining and finally the increase in lysosomes/autophagosomes. By contrast, caspase-3 reconstituted MCF-7 cell line showed apoptotic cell death features in response to fenretinide treatment. These data strongly suggest that fenretinide does not invariably elicit an apoptotic response but it is able to induce autophagy when apoptotic pathway is deregulated. The understanding of the molecular mechanisms involved in fenretinide action is important for the future design of therapies employing this retinoid in breast cancer treatment. 相似文献
3.
Ning Wang Yibin Feng Meifen Zhu Chi‐Man Tsang Kwan Man Yao Tong Sai‐Wah Tsao 《Journal of cellular biochemistry》2010,111(6):1426-1436
Extensive studies have revealed that berberine, a small molecule derived from Coptidis rhizoma (Huanglian in Chinese) and many other plants, has strong anti‐tumor properties. To better understand berberine‐induced cell death and its underlying mechanisms in cancer, we examined autophagy and apoptosis in the human hepatic carcinoma cell lines HepG2 and MHCC97‐L. The results of this study indicate that berberine can induce both autophagy and apoptosis in hepatocellular carcinoma cells. Berberine‐induced cell death in human hepatic carcinoma cells was diminished in the presence of the cell death inhibitor 3‐methyladenine, or following interference with the essential autophagy gene Atg5. Mechanistic studies showed that berberine may activate mitochondrial apoptosis in HepG2 and MHCC97‐L cells by increasing Bax expression, the formation of permeable transition pores, cytochrome C release to cytosol, and subsequent activation of the caspases 3 and 9 execution pathway. Berberine may also induce autophagic cell death in HepG2 and MHCC97‐L cells through activation of Beclin‐1 and inhibition of the mTOR‐signaling pathway by suppressing the activity of Akt and up‐regulating P38 MAPK signaling. This is the first study to describe the role of Beclin‐1 activation and mTOR inhibition in berberine‐induced autophagic cell death. These results further demonstrate the potential of berberine as a therapeutic agent in the emerging list of cancer therapies with novel mechanisms. J. Cell. Biochem. 111: 1426–1436, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
4.
Mi-Sun Hwang 《Biochemical and biophysical research communications》2010,399(1):111-38
Autophagy can promote cell survival or death, but the molecular basis of its dual role in cancer is not well understood. Here, we report that glucosamine induces autophagic cell death through the stimulation of endoplasmic reticulum (ER) stress in U87MG human glioma cancer cells. Treatment with glucosamine reduced cell viability and increased the expression of LC3 II and GFP-LC3 fluorescence puncta, which are indicative of autophagic cell death. The glucosamine-mediated suppression of cell viability was reversed by treatment with an autophagy inhibitor, 3-MA, and interfering RNA against Atg5. Glucosamine-induced ER stress was manifested by the induction of BiP, IRE1α, and phospho-eIF2α expression. Chemical chaperon 4-PBA reduced ER stress and thereby inhibited glucosamine-induced autophagic cell death. Taken together, our data suggest that glucosamine induces autophagic cell death by inducing ER stress in U87MG glioma cancer cells and provide new insight into the potential anticancer properties of glucosamine. 相似文献
5.
The purpose of this study was to evaluate the mechanism of ROS-induced hyperthermic cell death in a colon cancer cell line. HT-29 colon cancer cells were exposed to heat (43 degrees C) in the presence of tert-butyl hydroperoxide (t-BOOH). t-BOOH combined with hyperthermia significantly decreased cell viability as compared with t-BOOH or hyperthermia alone. This decrease in cell numbers was associated with retardation in the S phase transit and not through apoptosis. Cell death was noted to be accompanied by specific features characteristic of autophagy: the presence of cytoplasmic autophagic vacuoles; autophagosome membrane association of microtubule-associated protein light chain 3; accumulation of acidic vesicular organelles; and increased incorporation of MDC in the autophagosome. Thermal sensitization through modulation of cellular ROS may represent a novel approach to increase the efficacy of hyperthermia as an anticancer modality. 相似文献
6.
Shu-Yu Cheng Nan-Fu Chen Hsiao-Mei Kuo San-Nan Yang Chun-Sung Sung Ping-Jyun Sung Zhi-Hong Wen Wu-Fu Chen 《Apoptosis : an international journal on programmed cell death》2018,23(5-6):314-328
Prodigiosin, a secondary metabolite isolated from marine Vibrio sp., has antimicrobial and anticancer properties. This study investigated the cell death mechanism of prodigiosin in glioblastoma. Glioblastoma multiforme (GBM) is an aggressive primary cancer of the central nervous system. Despite treatment, or standard therapy, the median survival of glioblastoma patients is about 14.6 month. The results of the present study clearly showed that prodigiosin significantly reduced the cell viability and neurosphere formation ability of U87MG and GBM8401 human glioblastoma cell lines. Moreover, prodigiosin with fluorescence signals was detected in the endoplasmic reticulum and found to induce excessive levels of autophagy. These findings were confirmed by observation of LC3 puncta formation and acridine orange staining. Furthermore, prodigiosin caused cell death by activating the JNK pathway and decreasing the AKT/mTOR pathway in glioblastoma cells. Moreover, we found that the autophagy inhibitor 3-methyladenine reversed prodigiosin induced autophagic cell death. These findings of this study suggest that prodigiosin induces autophagic cell death and apoptosis in glioblastoma cells. 相似文献
7.
Endostatin, a proteolytic fragment of collagen XVIII, is a potent inhibitor of angiogenesis and suppresses neovascularization and tumor growth. However, the inhibitory mechanism of endostatin in human endothelial cells has not been characterized yet. Electron microscopic analysis revealed that endostatin induced formation of numerous autophagic vacuoles in endothelial in 6 to 24 h after treatment. Moreover, there was only a 2- to 3-fold increase in intracellular reactive oxygen species after endostatin treatment. Endostatin-induced cell death was not prevented by antioxidants (vitamin C, vitamin E, or propyl gallate) or caspase inhibitors, suggesting that the increase of oxidative stress or the activation of caspases may not be the crucial factors in the anti-angiogenic mechanism of endostatin. However, the cytotoxicity of endostatin was significantly reduced by 3-methyladenine (a specific inhibitor of autophagy) and serine and cysteine lysosomal protease inhibitors (leupeptin and aprotinin). Taken together, these results suggest that in human endothelial cells: (1) endostatin predominantly causes autophagic, rather than apoptotic, cell death, (2) endostatin-induced autophagic cell death occurs in the absence of caspase activation and through an oxidative-independent pathway, and (3) endostatin-induced "autophagic cell death" or "type 2 physiological cell death" is regulated by serine and cysteine lysosomal proteases. 相似文献
8.
Nano neodymium oxide induces massive vacuolization and autophagic cell death in non-small cell lung cancer NCI-H460 cells 总被引:3,自引:0,他引:3
Neodymium, a rare earth element, was known to exhibit cytotoxic effects and induce apoptosis in certain cancer cells. Here we show that nano-sized neodymium oxide (Nano Nd2O3) induced massive vacuolization and cell death in non-small cell lung cancer NCI-H460 cells at micromolar equivalent concentration range. Cell death elicited by Nano Nd2O3 was not due to apoptosis and caspases were not involved. Electron microscopy and acridine orange staining revealed extensive autophagy in the cytoplasm of the cells treated by Nano Nd2O3. Autophagy induced by Nano Nd2O3 was accompanied by S-phase cell cycle arrest, mild disruption of mitochondrial membrane potential, and inhibition of proteasome activity. Bafilomycin A1, but not 3-MA, induced apoptosis while inhibiting autophagy. Our results revealed a novel biological function for Nano Nd2O3 and may have implications for the therapy of non-small cell lung cancer. 相似文献
9.
Claerhout S Dutta B Bossuyt W Zhang F Nguyen-Charles C Dennison JB Yu Q Yu S Balázsi G Lu Y Mills GB 《PloS one》2012,7(6):e39400
Autophagic cell death or abortive autophagy has been proposed to eliminate damaged as well as cancer cells, but there remains a critical gap in our knowledge in how this process is regulated. The goal of this study was to identify modulators of the autophagic cell death pathway and elucidate their effects on cellular signaling and function. The result of our siRNA library screenings show that an intact coatomer complex I (COPI) is obligatory for productive autophagy. Depletion of COPI complex members decreased cell survival and impaired productive autophagy which preceded endoplasmic reticulum stress. Further, abortive autophagy provoked by COPI depletion significantly altered growth factor signaling in multiple cancer cell lines. Finally, we show that COPI complex members are overexpressed in an array of cancer cell lines and several types of cancer tissues as compared to normal cell lines or tissues. In cancer tissues, overexpression of COPI members is associated with poor prognosis. Our results demonstrate that the coatomer complex is essential for productive autophagy and cellular survival, and thus inhibition of COPI members may promote cell death of cancer cells when apoptosis is compromised. 相似文献
10.
Marchantin M: a novel inhibitor of proteasome induces autophagic cell death in prostate cancer cells
We previously reported that marchantin M (Mar) is an active agent to induce apoptosis in human prostate cancer (PCa), but the molecular mechanisms of action remain largely unknown. Here, we demonstrate that Mar potently inhibited chymotrypsin-like and peptidyl-glutamyl peptide-hydrolyzing activities of 20S proteasome both in in vitro and intracellular systems and significantly induced the accumulation of polyubiquitinated proteins in PCa cells. The computational modeling analysis suggested that Mar non-covalently bound to active sites of proteasome β5 and β1 subunits, resulting in a non-competitive inhibition. Proteasome inhibition by Mar subsequently resulted in endoplasmic reticulum (ER) stress, as evidenced by elevated glucose-regulated protein 78 and CHOP, increased phospho-eukaryotic translation initiation factor 2α (eIF2α), splicing of X-box-binding protein-1 and dilation of the ER. However, Mar-mediated cell death was not completely impaired by a pan inhibitor of caspases. Further studies revealed that the Mar-induced cell death was greatly associated with the activation of autophagy, as indicated by the significant induction of microtubule-associated protein-1 light chain-3 beta (LC3B) expression and conversion. Electron microscopic and green fluorescent protein-tagged LC3B analyses further demonstrated the ability of autophagy induction by Mar. Time kinetic studies revealed that Mar induced a rapid and highly sustained processing of LC3B in treated cells and simultaneously decreased the expression of p62/SQSTM1. Pharmacological blockade or knockdown of LC3B and Atg5 attenuated Mar-mediated cell death. The autophagic response triggered by Mar required the activation of RNA-dependent protein kinase-like ER kinase/eIF2α and suppression of the phosphatidylinositol-3 kinase/Akt/mammalian target of rapamycin axis via preventing activation and expression of Akt. Our results identified a novel mechanism for the cytotoxic effect of Mar, which strengthens it as a potential agent in cancer chemotherapy. 相似文献
11.
Lysosomes are acidic organelles that have a crucial role in degrading intracellular macromolecules and organelles during the final stage of autophagy. Tetrandrine (Tet), a bisbenzylisoquinoline alkaloid, was reported as an autophagy activator. Here, in contrast with previous studies, we show that Tet is a potent lysosomal deacidification agent and is able to block autophagic flux in the degradation stage. Single-agent Tet induces significant apoptosis both in vitro and in xenograft models. In the presence of Tet, apoptosis was preceded by a robust accumulation of autophagosomes and an increased level of microtubule-associated protein 1 light chain 3, type II (LC3-II). However, Tet increased the level of sequestosome 1 and decreased the turnover of LC3, indicating the blockade of autophagic flux in the degradation stage. As blockade of autophagic flux decreases the recycling of cellular fuels, Tet reduces the uptake of glucose in cancer cells. These effects lead to insufficient substrates for tricarboxylic acid (TCA) cycle and impaired oxidative phosphorylation. Blunting autophagosome formation using 3-methyladenine or genetic knockdown of Beclin-1 failed to rescue cells upon Tet treatment. By contrast, addition of methyl pyruvate to supplement TCA substrates protected Tet-treated tumor cells. These results demonstrate that energetic impairment is required in Tet-induced apoptosis. Tet, as a potent lysosomal inhibitor, is translatable to the treatment of malignant tumor patients. 相似文献
12.
白藜芦醇作为一种广泛存在于药食同源植物中的非黄酮类多酚化合物,其抗肿瘤效果受到广泛关注,但在抑制宫颈癌方面仍缺乏体内效应的实验依据.本研究通过体内实验发现白藜芦醇具有明显的抗肿瘤生长作用,组织水平LC3B、P62和Beclin-1表达改变,推测白藜芦醇可能通过促进癌细胞的过度自噬抑制宫颈癌的进展;进一步通过体外细胞实验... 相似文献
13.
Wang M Tan W Zhou J Leow J Go M Lee HS Casey PJ 《The Journal of biological chemistry》2008,283(27):18678-18684
A number of proteins involved in cell growth control, including members of the Ras family of GTPases, are modified at their C terminus by a three-step posttranslational process termed prenylation. The enzyme isoprenylcysteine carboxylmethyl-transferase (Icmt) catalyzes the last step in this process, and genetic and pharmacological suppression of Icmt activity significantly impacts on cell growth and oncogenesis. Screening of a diverse chemical library led to the identification of a specific small molecule inhibitor of Icmt, cysmethynil, that inhibited growth factor signaling and tumorigenesis in an in vitro cancer cell model (Winter-Vann, A. M., Baron, R. A., Wong, W., dela Cruz, J., York, J. D., Gooden, D. M., Bergo, M. O., Young, S. G., Toone, E. J., and Casey, P. J. (2005) Proc. Natl. Acad. Sci. U. S. A. 102, 4336-4341). To further evaluate the mechanisms through which this Icmt inhibitor impacts on cancer cells, we developed both in vitro and in vivo models utilizing PC3 prostate cancer cells. Treatment of these cells with cysmethynil resulted in both an accumulation of cells in the G(1) phase and cell death. Treatment of mice harboring PC3 cell-derived xenograft tumors with cysmethynil resulted in markedly reduced tumor size. Analysis of cell death pathways unexpectedly showed minimal impact of cysmethynil treatment on apoptosis; rather, drug treatment significantly enhanced autophagy and autophagic cell death. Cysmethynil-treated cells displayed reduced mammalian target of rapamycin (mTOR) signaling, providing a potential mechanism for the excessive autophagy as well as G(1) cell cycle arrest observed. These results identify a novel mechanism for the antitumor activity of Icmt inhibition. Further, the dual effects of cell death and cell cycle arrest by cysmethynil treatment strengthen the rationale for targeting Icmt in cancer chemotherapy. 相似文献
14.
Wencheng Kong Hangzhang Zhu Sixing Zheng Guang Yin Panpan Yu Yuqiang Shan Xinchun Liu Rongchao Ying Hong Zhu Shenglin Ma 《Journal of cellular and molecular medicine》2022,26(21):5539
Larotrectinib (Lar) is a highly selective and potent small‐molecule inhibitor used in patients with tropomyosin receptor kinase (TRK) fusion‐positive cancers, including colon cancer. However, the underlying molecular mechanisms specifically in patients with colon cancer have not yet been explored. Our data showed that Lar significantly suppressed proliferation and migration of colon cancer cells. In addition, Lar suppressed the epithelial–mesenchymal transition (EMT) process, as evidenced by elevation in E‐cadherin (E‐cad), and downregulation of vimentin and matrix metalloproteinase (MMP) 2/9 expression. Furthermore, Lar was found to activate autophagic flux, in which Lar increased the ratio between LC3II/LC3I and decreased the expression of p62 in colon cancer cells. More importantly, Lar also increased AMPK phosphorylation and suppressed mTOR phosphorylation in colon cancer cells. However, when we silenced AMPK in colon cancer cells, Lar‐induced accumulation of autolysomes as well as Lar‐induced suppression of the EMT process were significantly diminished. An in vivo assay also confirmed that tumour volume and weight decreased in Lar‐treated mice than in control mice. Taken together, this study suggests that Lar significantly suppresses colon cancer proliferation and migration by activating AMPK/mTOR‐mediated autophagic cell death. 相似文献
15.
Daniela Belloni Chiara Foglieni Federico Caligaris-Cappio Marina Ferrarini Elisabetta Ferrero 《Experimental cell research》2010,316(6):1010-107
The proteasome inhibitor Bortezomib has been approved for the treatment of relapsed/refractory multiple myeloma (MM), thanks to its ability to induce MM cell apoptosis. Moreover, Bortezomib has antiangiogenic properties. We report that endothelial cells (EC) exposed to Bortezomib undergo death to an extent that depends strictly on their activation state. Indeed, while quiescent EC are resistant to Bortezomib, the drug results maximally toxic in EC switched toward angiogenesis with FGF, and exerts a moderate effect on subconfluent HUVEC. Moreover, EC activation state deeply influences the death pathway elicited by Bortezomib: after treatment, angiogenesis-triggered EC display typical features of apoptosis. Conversely, death of subconfluent EC is preceded by ROS generation and signs typical of autophagy, including intense cytoplasmic vacuolization with evidence of autophagosomes at electron microscopy, and conversion of the cytosolic MAP LC3 I form toward the autophagosome-associated LC3 II form. Treatment with the specific autophagy inhibitor 3-MA prevents both LC3 I/LC3 II conversion and HUVEC cell death. Finally, early removal of Bortezomib is accompanied by the recovery of cell shape and viability. These findings strongly suggest that Bortezomib induces either apoptosis or autophagy in EC; interfering with the autophagic response may potentiate the antiangiogenic effect of the drug. 相似文献
16.
17.
Silvia Terés Victoria Lladó Mónica Higuera Gwendolyn Barceló-Coblijn M. Laura Martin Maria Antònia Noguera-Salvà Amaia Marcilla-Etxenike José Manuel García-Verdugo Mario Soriano-Navarro Carlos Saus Ulises Gómez-Pinedo Xavier Busquets Pablo V. Escribá 《Autophagy》2012,8(10):1542-1544
The very high mortality rate of gliomas reflects the unmet therapeutic need associated with this type of brain tumor. We have discovered that the plasma membrane fulfills a critical role in the propagation of tumorigenic signals, whereby changes in membrane lipid content can either activate or silence relevant pathways. We have designed a synthetic fatty acid, 2-hydroxyoleic acid (2OHOA), that specifically activates sphingomyelin synthase (SGMS), thereby modifying the lipid content of cancer cell membranes and restoring lipid levels to those found in normal cells. In reverting, the structure of the membrane by activating SGMS, 2OHOA inhibits the RAS-MAPK pathway, which in turn fails to activate the CCND (Cyclin D)-CDK4/CDK6 and PI3K-AKT1 pathways. The overall result in SF767 cancer cells, a line that is resistant to apoptosis, is the sequential induction of cell cycle arrest, cell differentiation and autophagy. Such effects are not observed in normal cells (MRC-5) and thus, this specific activation of programmed cell death infers greater efficacy and lower toxicity to 2OHOA than that associated with temozolomide (TMZ), the reference drug for the treatment of glioma. 相似文献
18.
《Autophagy》2013,9(10):1542-1544
The very high mortality rate of gliomas reflects the unmet therapeutic need associated with this type of brain tumor. We have discovered that the plasma membrane fulfills a critical role in the propagation of tumorigenic signals, whereby changes in membrane lipid content can either activate or silence relevant pathways. We have designed a synthetic fatty acid, 2-hydroxyoleic acid (2OHOA), that specifically activates sphingomyelin synthase (SGMS), thereby modifying the lipid content of cancer cell membranes and restoring lipid levels to those found in normal cells. In reverting, the structure of the membrane by activating SGMS, 2OHOA inhibits the RAS-MAPK pathway, which in turn fails to activate the CCND (Cyclin D)-CDK4/CDK6 and PI3K-AKT1 pathways. The overall result in SF767 cancer cells, a line that is resistant to apoptosis, is the sequential induction of cell cycle arrest, cell differentiation and autophagy. Such effects are not observed in normal cells (MRC-5) and thus, this specific activation of programmed cell death infers greater efficacy and lower toxicity to 2OHOA than that associated with temozolomide (TMZ), the reference drug for the treatment of glioma. 相似文献