共查询到20条相似文献,搜索用时 15 毫秒
1.
Vitamin C inhibits platelet expression of CD40 ligand 总被引:3,自引:0,他引:3
Pignatelli P Sanguigni V Paola SG Lo Coco E Lenti L Violi F 《Free radical biology & medicine》2005,38(12):1662-1666
Upon stimulation with agonists, platelets express CD40 ligand (CD40L), a transmembrane protein implicated in the initiation and progression of atherosclerotic disease. We have recently discovered that oxidative stress plays a major role in platelet CD40L expression. In this study, we sought to determine whether vitamin C, a known antioxidant, is able to influence platelet CD40L expression. In vitro experiments were done by stimulating platelets with collagen in the presence or absence of vitamin C (50–100 μM) or vehicle as control. An in vivo study was done in 10 healthy subjects who were randomized to intravenous infusion of placebo or 1 g vitamin C for 45 min in a crossover design. At the end of infusion platelet CD40L and O2- were measured. The in vitro study demonstrated that vitamin C dose dependently inhibited platelet CD40L expression without affecting agonist-induced platelet aggregation. In subjects treated with placebo no changes of platelet CD40L and O2- were observed; conversely, vitamin C infusion caused a significant and parallel decrease of platelet O2- (−70%, P < 0.001) and CD40L (−68%, P < 0.001). Platelet aggregation was not modified by either treatment. This study suggests that water-soluble antioxidants, which scavenge superoxide radicals, may reduce platelet CD40L expression. 相似文献
2.
Khan WI Motomura Y Blennerhassett PA Kanbayashi H Varghese AK El-Sharkawy RT Gauldie J Collins SM 《American journal of physiology. Gastrointestinal and liver physiology》2005,288(1):G15-G22
In our previous studies, we demonstrated that during Trichinella spiralis infection, T helper (Th) 2 cells contribute to the development of intestinal muscle hypercontractility and worm expulsion from the gut via STAT6. In addition, we have linked the altered muscle contractility to the eviction of the parasite and thereby to the host defense. However, the initial events linking infection to the development of muscle hypercontractility are poorly understood. In this study, we examined the contribution of CD40-CD40 ligand (CD40L) interaction in the development of intestinal muscle hypercontractility, in monocyte chemoattractant protein-1 (MCP-1) production, and in the Th2 response in CD40 ligand-deficient (CD40L -/-) mice infected with T. spiralis. Expulsion of intestinal worms was substantially delayed in CD40L -/- mice compared with the wild-type mice after T. spiralis infection. Consistent with delayed worm expulsion, there was a significant attenuation of intestinal muscle contractility in CD40L -/- mice. Infected CD40L -/- mice also exhibited marked impairment in the production of MCP-1, IL-4, IL-13, IgG1, IgE, and mouse mucosal MCP 1 (MMCP-1), and in goblet cell response. These results demonstrate that CD40-CD40 ligand interaction plays an important role in MCP-1 production, Th2 response, intestinal muscle hypercontractility, and worm expulsion in nematode infection. The present data suggest that the early events leading to the generation of Th2 response include CD40-CD40 ligand interaction, which subsequently influences the production of Th2 cytokines, most likely via upregulation of MCP-1. 相似文献
3.
CD30 and CD40 are members of the tumor necrosis factor (TNF) receptor family. These two receptors have pleiotropic biologic functions including induction of apoptosis and enhancing cell survival. This review will discuss the pattern of expression of these receptors in malignant lymphoid disorders and their prospective ligands. Understanding issues related to these two ligands and their receptors in lymphoid malignancies may help to improve the classification of these diseases and could open the doors for new treatment strategies. 相似文献
4.
Recognition of HIV glycoprotein gp120 by T cells. Role of monocyte CD4 in the presentation of gp120 总被引:4,自引:0,他引:4
R F Siliciano C Knall T Lawton P Berman T Gregory E L Reinherz 《Journal of immunology (Baltimore, Md. : 1950)》1989,142(5):1506-1511
The HIV envelope glycoprotein gp120 binds with high affinity to CD4 and is responsible for the tropism of HIV for CD4+ T cells and monocytes. Efforts to develop HIV vaccines have focused on gp120 and, therefore, a detailed molecular understanding of human immune responses to gp120 is essential. In this report, we have used human T cell clones specific for gp120 to examine the processing and presentation of gp120 to T cells. In particular, we examined the role of the CD4 that is expressed at low levels on the surfaces of human monocytes in the presentation of gp120 by monocytes. The presentation of gp120 to gp120-specific human T cell clones was blocked by pretreatment of monocytes with anti-CD4 mAb. Blocking of monocyte CD4 with anti-CD4 did not inhibit presentation of other Ag or of synthetic peptides representing epitopes within gp120 recognized by gp120-specific T cell clones. These results indicated that the anti-CD4-mediated inhibition occurred at the level of the monocyte, was specific for the gp120 response, and was operative at the initial Ag uptake phase of the Ag-processing pathway. Definitive confirmation that monocyte CD4 functions in the initial uptake step of the gp120-processing pathway was obtained by using soluble CD4 to block the interaction of gp120 with monocyte CD4. These results demonstrate that gp120 expressed by human monocytes plays an important role in the initial uptake of gp120 by monocytes and that gp120 taken up via CD4 is subsequently processed to allow for exposure of epitopes recognized by gp120-specific human T cells. At limiting gp120 concentrations, uptake via CD4 is essential for the presentation of gp120. 相似文献
5.
Suppressor of cytokine signaling 1 inhibits cytokine induction of CD40 expression in macrophages 总被引:4,自引:0,他引:4
Wesemann DR Dong Y O'Keefe GM Nguyen VT Benveniste EN 《Journal of immunology (Baltimore, Md. : 1950)》2002,169(5):2354-2360
CD40 is a type I membrane-bound molecule belonging to the TNFR superfamily that is expressed on various immune cells including macrophages and microglia. The aberrant expression of CD40 is involved in the initiation and maintenance of various human diseases including multiple sclerosis, arthritis, atherosclerosis, and Alzheimer's disease. Inhibition of CD40 signaling has been shown to provide a significant beneficial effect in a number of animal models of human diseases including the aforementioned examples. We have previously shown that IFN-gamma induces CD40 expression in macrophages and microglia. IFN-gamma leads to STAT-1alpha activation directly and up-regulation of NF-kappaB activity due to the secretion and subsequent autocrine signaling of TNF-alpha. However, TNF-alpha alone is not capable of inducing CD40 expression in these cells. Suppressor of cytokine signaling 1 protein (SOCS-1) is a cytokine-inducible Src homology 2-containing protein that regulates cytokine receptor signaling by inhibiting STAT-1alpha activation via a specific interaction with activated Janus kinase 2. Given the important role of CD40 in inflammatory events in the CNS as well as other organ systems, it is imperative to understand the molecular mechanisms contributing to both CD40 induction and repression. We show that ectopic expression of SOCS-1 abrogates IFN-gamma-induced CD40 protein expression, mRNA levels, and promoter activity. Additionally, IFN-gamma-induced TNF-alpha secretion, as well as STAT-1alpha and NF-kappaB activation, are inhibited in the presence of SOCS-1. We conclude that SOCS-1 inhibits cytokine-induced CD40 expression by blocking IFN-gamma-mediated STAT-1alpha activation, which also then results in suppression of IFN-gamma-induced TNF-alpha secretion and subsequent NF-kappaB activation. 相似文献
6.
Donhauser N Pritschet K Helm M Harrer T Schuster P Ries M Bischof G Vollmer J Smola S Schmidt B;German Competence Network HIV/AIDS 《PloS one》2012,7(3):e33925
Although a signature of increased interferon (IFN-)alpha production is observed in HIV-1 infection, the response of circulating plasmacytoid dendritic cells (PDC) to Toll-like receptor ligand stimulation is substantially impaired. This functional PDC deficit, which we specifically observed in HIV-1 infected individuals with less than 500 CD4+ T cells/µl, is not well understood. We provide evidence that the peripheral IFN-alpha production in HIV-1 infection is actively suppressed by the enhanced interaction of CD40 ligand (CD40L), a member of the tumor necrosis factor family, and its receptor CD40, which are both upregulated upon immune activation. Plasma levels of soluble CD40L were significantly higher in untreated HIV-1 infected individuals (n = 52) than in subjects on long-term antiretroviral therapy (n = 62, p<0.03) and in uninfected control donors (n = 16, p<0.001). Concomitantly, cell-associated CD40L and the expression of the receptor CD40 on the PDC were significantly upregulated in HIV-1 infection (p<0.05). Soluble and cell-associated CD40L inhibited the PDC-derived IFN-alpha production by CpG oligodeoxynucleotides dose-dependently. This suppressive effect was observed at much lower, physiological CD40L concentrations in peripheral blood mononuclear cells (PBMC) of HIV-1 infected individuals compared to controls (p<0.05). The CpG-induced IFN-alpha production in PBMC of HIV-1 infected donors was directly correlated with PDC and CD4+ T cell counts, and inversely correlated with the viral loads (p<0.001). In HIV-1 infected donors with less than 500 CD4+ T cells/µl, the CpG-induced IFN-alpha production was significantly correlated with the percentage of CD40-expressing PDC and the level of CD40 expression on these cells (p<0.05), whereas CD40L plasma levels played a minor role. In addition, low-dose CD40L contributed to the enhanced production of interleukin 6 and 8 in PBMC of HIV-1 infected donors compared to controls. Our data support the conclusion that the chronic immune activation in HIV-1 infection impairs peripheral PDC innate immune responses at least in part via enhanced CD40:CD40L interactions. 相似文献
7.
8.
The emerging role of immune activation and inflammation in the pathogenesis of human immunodeficiency virus (HIV) disease has stimulated the search for new approaches for managing HIV infection. Recent evidence suggests that an imbalance between matrix metalloproteinases (MMPs) and endogenous tissue inhibitors of MMPs (TIMPs) might contribute to HIV-associated pathology by inducing remodelling of the extracellular matrix. Here, we discuss the evidence and the potential mechanisms for altered MMP or TIMP function in HIV infection and disease. Furthermore, we outline the possible medical implications for the use of compounds that target MMP activity, and we propose that antiretroviral drugs, particularly HIV protease inhibitors (PIs), and compounds with anti-inflammatory properties, such as statins, natural omega-3 fatty acids and tetracyclines, which inhibit MMP function, might represent useful therapeutic approaches to mitigate potential MMP-related damage during HIV infection. 相似文献
9.
10.
Gene transcription in HIV infection 总被引:2,自引:0,他引:2
11.
Sharp C Thompson C Samy ET Noelle R Tung KS 《Journal of immunology (Baltimore, Md. : 1950)》2003,170(4):1667-1674
The blockade of CD40 ligand (CD40L) is effective in autoimmune disease prevention. Recently, a brief period of CD40L mAb treatment was reported to induce tolerance and enhancement of CD4(+)CD25(+) regulatory T cell activity. We therefore determined the efficacy of CD40L mAb treatment in autoimmunity that resulted from CD4(+)CD25(+) regulatory T cell deficiency. Autoimmune ovarian disease (AOD) and oocyte autoantibody response of day 3-thymectomized (d3tx) mice were inhibited by continuous CD40L mAb treatment from day 3, or from days 10-14, whereas CD40L mAb treatment confined to the neonatal week was ineffective. The enhanced expression of memory markers (CD44 and CD62L(low)) on CD4(+) T cells of the d3tx mice was unaffected by CD40L mAb treatment. In contrast, their increased T cell activation markers (CD69 and CD25) were eliminated by CD40L mAb treatment. Moreover, ex vivo activated T cells of d3tx mice expressed elevated intracellular IFN-gamma, and this was also blocked by CD40L mAb. The memory T cells, although nonpathogenic in CD40L mAb-positive environment, transferred severe AOD to CD40L mAb(-) neonatal recipients. Most importantly, CD40L mAb treatment inhibited AOD in recipients of T cells from d3tx donors with severe AOD and led to regression of AOD in d3tx mice documented at 4 wk. Therefore, 1) the continuous presence of CD40L mAb both prevents and causes regression of AOD in the d3tx mice; and 2) the multiple steps of the d3tx autoimmune disease, including T cell activation, cytokine production, T cell-mediated inflammation, and tissue injury, are CD40L dependent. 相似文献
12.
CD40-40L signaling in vascular inflammation 总被引:5,自引:0,他引:5
Ligation of CD40 in circulating cells or in the vessel wall may promote mononuclear cell recruitment, participate in the weakening of the plaque, and contribute to thrombosis. This process appears to be redox-sensitive, but the precise signaling mechanism by which the interaction between CD40L and its receptor CD40 mediates inflammatory secretion is unclear. Our previous studies have shown that the CD40-CD40L interaction modulates release of reactive oxygen species (ROS) and the current findings demonstrate that in endothelial cells CD40L dose dependently induces intracellular CD40L and MCP1 release in a redox sensitive manner. Pharmacological inhibition of phosphatidylinositol 3-kinase and p38 MAPK as well as adenovirus-mediated inactivation of Akt and p38 MAPK inhibited CD40L effects on endothelial cells. Akt, in particular, appeared to mediate CD40L-induced CD40L synthesis and MCP1 release by endothelial cells in a redox sensitive manner via NFkappaB activation. In addition, using confocal microscopy, exogenous addition of recombinant CD40L or adenoviral mediated CD40L overexpression was found to stimulate nuclear translocation of NFkappaB, which was further augmented by Akt overexpression and inhibited by Akt inactivation. These data support a mechanism whereby redox-sensitive CD40-CD40L interactions induce activation of Akt and p38 MAPK, leading to stimulation of NFkappaB and enhanced synthesis of CD40L and MCP1. Increased CD40L and MCP1 may contribute to the adherence of CD40-positive cells, such as platelets and monocytes, to the vessel wall modulating atherothrombosis. 相似文献
13.
Badr G Borhis G Treton D Moog C Garraud O Richard Y 《Journal of immunology (Baltimore, Md. : 1950)》2005,175(1):302-310
We analyzed the modulation of human B cell chemotaxis by the gp120 proteins of various HIV-1 strains. X4 and X4/R5 gp120 inhibited B cell chemotaxis toward CXCL12, CCL20, and CCL21 by 40-50%, whereas R5 gp120 decreased inhibition by 20%. This gp120-induced inhibition was strictly dependent on CXCR4 or CCR5 and lipid rafts but not on CD4 or V(H)3-expressing BCR. Inhibition did not impair the expression or ligand-induced internalization of CCR6 and CCR7. Our data suggest that gp120/CXCR4 and gp120/CCR5 interactions lead to the cross-desensitization of CCR6 and CCR7 because gp120 does not bind CCR6 and CCR7. Unlike CXCL12, gp120 did not induce the activation of phospholipase Cbeta3 and PI3K downstream from CXCR4, whereas p38 MAPK activation was observed. Similar results were obtained if gp120-treated cells were triggered by CCL21 and CCL20. Our results are consistent with a blockade restricted to signaling pathways using phosphatidylinositol-4,5-bisphosphate as a substrate. X4 and X4/R5 gp120 induced the cleavage of CD62 ligand by a mechanism dependent on matrix metalloproteinase 1 and 3, CD4, CXCR4, Galpha(i), and p38 MAPK, whereas R5 gp120 did not. X4 and X4/R5 gp120 also induced the relocalization of cytoplasmic CD95 to the membrane and a 23% increase in CD95-mediated apoptosis. No such effects were observed with R5 gp120. The gp120-induced decrease in B cell chemotaxis and CD62 ligand expression, and increase in CD95-mediated B cell apoptosis probably have major deleterious effects on B cell responsiveness during HIV infection and in vaccination trials. 相似文献
14.
Léveillé C Bouillon M Guo W Bolduc J Sharif-Askari E El-Fakhry Y Reyes-Moreno C Lapointe R Merhi Y Wilkins JA Mourad W 《The Journal of biological chemistry》2007,282(8):5143-5151
It was originally thought that the critical role of the CD40 ligand (CD40L) in normal and inflammatory immune responses was mainly mediated through its interaction with the classic receptor, CD40. However, data from CD40L(-/-) and CD40(-/-) mice suggest that the CD40L-induced inflammatory immune response involves at least one other receptor. This hypothesis is supported by the fact that CD40L stabilizes arterial thrombi through an alphaIIbbeta3-dependent mechanism. Here we provide evidence that soluble CD40L (sCD40L) binds to cells of the undifferentiated human monocytic U937 cell line in a CD40- and alphaIIbbeta3-independent manner. Binding of sCD40L to U937 cells was inhibited by anti-CD40L monoclonal antibody 5C8, anti-alpha5beta1 monoclonal antibody P1D6, and soluble alpha5beta1. The direct binding of sCD40L to purified alpha5beta1 was confirmed in a solid phase binding assay. Binding of sCD40L to alpha5beta1 was modulated by the form of alpha5beta1 expressed on the cell surface as the activation of alpha5beta1 by Mn(2+) or dithiothreitol resulted in the loss of sCD40L binding. Moreover, sCD40L induced the translocation of alpha5beta1 to the Triton X-100-insoluble fraction of U937 cells, the rapid activation of the MAPK pathways ERK1/2, and interleukin-8 gene expression. The binding of sCD40L to CD40 on BJAB cells, an alpha5beta1-negative B cell line, and the resulting activation of ERK1/2 was not inhibited by soluble alpha5beta1, suggesting that sCD40L can bind concomitantly to both receptors. These results document the existence of novel CD40L-dependent pathways of physiological relevance for cells expressing multiple receptors (CD40, alpha5beta1, and alphaIIbbeta3) for CD40L. 相似文献
15.
Reyes-Moreno C Sharif-Askari E Girouard J Léveillé C Jundi M Akoum A Lapointe R Darveau A Mourad W 《The Journal of biological chemistry》2007,282(27):19473-19480
It is well established that the CD154/CD40 interaction is required for T cell-dependent B cell differentiation and maturation. However, the early molecular and structural mechanisms that orchestrate CD154 and CD40 signaling at the T cell/APC contact site are not well understood. We demonstrated that CD40 engagement induces the formation of disulfide-linked (dl) CD40 homodimers that predominantly associate with detergent-resistant membrane microdomains. Mutagenesis and biochemical analyses revealed that (a) the integrity of the detergent-resistant membranes is necessary for dl-CD40 homodimer formation, (b) the cytoplasmic Cys(238) of CD40 is the target for the de novo disulfide oxidation induced by receptor oligomerization, and (c) dl-CD40 homodimer formation is required for CD40-induced interleukin-8 secretion. Stimulation of CD154-positive T cells with staphylococcal enterotoxin E superantigen that mimics nominal antigen in initiating cognate T cell/APC interaction revealed that dl-CD40 homodimer formation is required for interleukin-2 production by T cells. These findings indicate that dl-CD40 homodimer formation has a physiological role in regulating bidirectional signaling. 相似文献
16.
Background
Thymic function is altered in HIV infection and characterized by dysregulation of the thymic epithelial network, reduced thymic output and ultimately an impaired naïve T-cell pool. The IL-7/IL-7 receptor (IL-7R) signalling pathway is critical for the maturation and differentiation of thymocytes. HIV infection is associated with a decrease in IL-7Rα (CD127) expression and impaired CD127 signalling in circulating CD8+ T-cells; however, little is known about the effect of HIV on CD127 expression and IL-7 activity in the thymus. Therefore, the effect of in vitro HIV infection on CD127 expression and IL-7-mediated function in thymocytes was investigated.Findings
In vitro HIV infection of thymocytes did not affect CD127 expression on either total thymocytes or on single positive CD4 or single positive CD8 subsets. However, HIV infection resulted in a decrease in the level of IL-7-induced STAT-5 phosphorylation and Bcl-2 expression in unfractionated thymocytes.Conclusion
These findings indicate that HIV infection alters IL-7 responsiveness of thymocytes by a mechanism other than CD127 downregulation and potentially explain the disruption in thymopoiesis observed in HIV infection. 相似文献17.
Moyle WR Xing Y Lin W Cao D Myers RV Kerrigan JE Bernard MP 《The Journal of biological chemistry》2004,279(43):44442-44459
Studies described here were initiated to develop a model of glycoprotein hormone receptor structure and function. We found that the region that links the lutropin receptor leucine-rich repeat domain (LRD) to its transmembrane domain (TMD) has substantial roles in ligand binding and signaling, hence we term it the signaling specificity domain (SSD). Theoretical considerations indicated the short SSDs in marmoset lutropin and salmon follitropin receptors have KH domain folds. We assembled models of lutropin, follitropin, and thyrotropin receptors by aligning models of their LRD, TMD, and shortened SSD in a manner that explains how substitutions in follitropin and thyrotropin receptors distant from their apparent ligand binding sites enable them to recognize lutropins. In these models, the SSD is parallel to the concave surface of the LRD and makes extensive contacts with TMD outer loops 1 and 2. The LRD appears to contact TMD outer loop 3 and a few residues in helices 1, 5, 6, and 7. We propose that signaling results from contacts of the ligands with the SSD and LRD that alter the LRD, which then moves TMD helices 6 and 7. The positions of the LRD and SSD support the notion that the receptor can be activated by hormones that dock with these domains in either of two different orientations. This would account for the abilities of some ligands and ligand chimeras to bind multiple receptors and for some receptors to bind multiple ligands. This property of the receptor may have contributed significantly to ligand-receptor co-evolution. 相似文献
18.
19.
20.
Werneburg BG Zoog SJ Dang TT Kehry MR Crute JJ 《The Journal of biological chemistry》2001,276(46):43334-43342
Signal transduction through the CD40 receptor is initiated by binding of its trimeric ligand and propagated by interactions of tumor necrosis factor receptor-associated factor (TRAF) proteins with the multimerized CD40 cytoplasmic domain. Using defined multimeric constructs of the CD40 cytoplasmic domain expressed as either soluble or myristoylated proteins, we have addressed the extent of receptor multimerization needed to initiate signal transduction and identified components of CD40 signaling complexes. Signal transduction in human embryonic kidney 293 cells, measured by nuclear factor kappaB activation, was observed in cells expressing soluble trimeric CD40 cytoplasmic domain and to a lesser extent in cells expressing dimeric CD40 cytoplasmic domain. Nuclear factor kappaB activation was strongest in cells expressing myristoylated trimeric CD40 cytoplasmic domain. Signal transduction through trimeric CD40 cytoplasmic domains with various point mutations in the TRAF binding sites was similar to signal transduction through analogous full-length receptors. Transiently expressed soluble trimeric CD40 cytoplasmic domain was isolated as complexes that contained TRAF2, TRAF3, TRAF5, TRAF6, and the inhibitor of apoptosis protein (c-IAP1). Association of c-IAP1 with the CD40 cytoplasmic domain complex was indirect and dependent on the presence of an intact TRAF1/2/3 binding site. These results suggest that extracellular ligation of CD40 can be bypassed and that soluble trimerized CD40 complexes can be isolated and used to identify components that link CD40 with signaling pathways. 相似文献