首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Diel variations in urea decomposing activity in the euphotic zone of brackish Lake Nakaumi were measured under fixed light intensity. The decomposition rate of urea was 17 to 44 μ mol urea m−3 h−1 in the light and 10 to 27 μ mol urea m−3 h−1 in the dark. Higher decomposition rates were obtained in the upper euphotic zone. A clear diel periodicity in the urea decomposition rate was observed, with high rates from 1200 to 1600 and low rates from 0000 to 0400. Chlorophyll a specific decomposing activity ranged from 12 to 21 μg urea C mg chl.a −1 h−1 in the light and 7 to 13 μg urea C mg chl.a −1 h−1 in the dark. In the light, high values were obtained from 1600 to 2000 and low values from 0400 to 0800. The diel change in specific decomposing activity exhibited a similar pattern to that of the photosynthetic assimilation number, following the diel change in photosynthetic activity. Received: March 10, 1999 / Accepted: October 22, 1999  相似文献   

2.
The ability of photoautotrophic picoplankton Synechococcus to degrade urea was examined in the euphotic zone of Lake Biwa. Samples were divided into pico (0.2–2.0 μm) and larger (>2.0 μm) size fractions by filtration. The rates of urea degradation (the sum of the rates of incorporation of carbon into phytoplankton cells and of liberation of CO2 into water) measured by radiocarbon urea were 8 and 17 μmol urea m−3 day−1 in June and July, respectively, for the picophytoplankton in the surface water, and 196 and 96 μmol urea m−3 day−1, respectively for the larger phytoplankton. The rates decreased with depth, somewhat similar to the vertical profiles of the photosynthetic rate. The urea degradation rates were obviously high under light conditions. In daylight, urea was degraded into two phases, carbon incorporation and CO2 liberation, whereas in the dark it was degraded only into the CO2 liberation phase. The contribution of picophytoplankton to total phytoplankton in urea degradation was high in the subsurface to lower euphotic layer. Urea degradation activity was higher in the picophytoplankton fraction than in the larger phytoplankton fraction. Shorter residence times of urea were obtained in the upper euphotic zone. The contribution of picophytoplankton to urea cycling was 4% to 35%. The present results suggest that the picophytoplankton Synechococcus is able to degrade urea and effectively makes use of regenerated urea as a nitrogen source in the euphotic layer, and that picophytoplankton play an important role in the biogeochemical nitrogen cycle in Lake Biwa. Received: June 25, 1998 / Accepted: February 10, 1999  相似文献   

3.
The activity of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase (DS-Mn, DS-Co), phenylalanine ammonia-lyase (PAL), and chalcone synthase (CHS) was monitored at various light intensities (dark, 8.88 μmol m−2 s−1, 88.8 μmol m−2 s−1) using a strawberry cell suspension culture. DS-Mn, PAL, and CHS were found to increase significantly (p>0.05) under light intensitie of 88.8 μmol m−2 s−1 compared to those of 8.88 μmol m−2 s−1 and dark. The activity of DS-Mn, PAL, and CHS were maximum at 88.8 μmol m−2 s−1. Anthocyanin content reached a maximum after 48–60 h of culturing at 88.8 μmol m−2 s−1. DS-Co showed greater activity than DS-Mn during cell culturing, but showed no correlation with anthocyanin production and light intensity. The CHS gene expression was continuous at a light intensity of 88.8 μmol m−2 s−1. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
An investigation into the changing phytoplankton biomass and total water column production during autumn sea ice formation in the eastern Weddell Sea, Antarctica showed reduced biomass concentrations and extremely low daily primary production. Mean chlorophyll-a concentration for the entire study period was extremely low, 0.15±0.01 mg.m−3 with a maximum of 0.35 mg.m−3 found along the first transect to the east of the grid. Areas of low biomass were identified as those either associated with heavy grazing or with deep mixing and corresponding low light levels. In most cases phytoplankton in the <20-μm size classes dominated. Integrated biomass to 100 m ranged from 7.1 to 28.0 mg.m−2 and correlated positively with surface chlorophyll-a concentrations. Mean PBmax (photosynthetic capacity) and αB (initial slope of the photosynthesis-irradiance curve) were 1.25±0.19 mgC. mgChla −1.h−1 and 0.042±0.009 mgC.mgChla −1.h−1.(μmol.m−2.s−1)−1 respectively. The mean index of photoadaptation,I k, was 32.2±4.0 μmol.m−2.s−1 and photoinhibition was found in all cases. Primary production was integrated to the critical depth (Z cr) at each production station and ranged from 15.6 to 41.5 mgC.m−2.d−1. It appears that, other than grazing intensity, the relationship between the critical depth and the mixing depth (Z mix) is an important factor as, ultimately, light availability due both to the late season and growing sea ice cover severely limits production during the austral autumn.  相似文献   

5.
Summary In vitro banana (Musa spp.) shoots were cultured under photomixotrophic (30 gl−1 sucrose and 0.2 h−1 number of air exchanges of culture vessels) and photoautotrophic (0 gl−1 sucrose and 3.9 h−1 number of air exchanges) conditions for 28 d in 370 cm3 Magenta boxes (GA7-type) containing 70 ml of half-strength Murashige and Skoog (MS) medium with 22.2 μM N6-benzyladenine (BA). The effects of varying CO2 concentration (475 or 1340 μmol mol−1) and light intensity (photosynthetic photon flux (PPF) of 100 or 200 μmol m−2 s−1) were investigated. Fresh and dry weights of banana shoots grown photomixotrophically were significantly greater on day 28 than those grown photoautotrophically. Photoautorophic shoots had a larger number of unfolded leaves and greater leaf area than photomixotrophic plants by days 14 and 28, regardless of CO2 concentration. The shoot fresh and dry weights on day 14 in photoautotrophic conditions were significantly greater at PPF of 200 μmol m−2 s−1 than at 100 μmol m−2 s−1. The increase in net photosynthetic rate of photoautotrophic banana shoots was significant compared with photomixotrophic shoots. The multiplication ratio of in vitro banana shoots grown photoautotrophically in a 28-d culture period was the greatest at 100 μmol m−2 s−1 PPF and 475 μmol mol−1 CO2.  相似文献   

6.
This investigation represents the first integrated study of primary production, nutrient dynamics and mineralisation in a northeastern fjord of Greenland. The data presented represent conditions and activities during the early summer thaw (first 2 weeks of July). Primary production (5.3 mmol C m−2 d−2) and chlorophylla (4.1 μg 1−1) values were found to be comparable with measurements from other Arctic regions. Water column N-fixation rates were low (<0.02 μmol N m−1 d−1), but comparable with other estuarine systems. Despite a constant low temperature in the bottom waters (-1.0 to -1.8°C), a high sedimentary O2 uptake (740 μmol m−2 h−2) was observed and was primarily caused by the presence of benthic infauna. Bioturbation by benthic infauna was reflected in both homogeneous210Pb and137Cs profiles in the upper 4 cm of the sediment. Permanent accumulation within Young Sound was measured to 0.12 cm/year corresponding to 153 mmol C m−2 year−1 and 15 mmol N m−2 year−1. Rates of nitrification (22 μmol m−2 h−1) and denitrification (9 μmol m−2 h−1) were comparable with rates reported for other sediments with much higher environmental temperatures. Suphate reduction rates integrated over the upper 12 cm of the sediment were calculated to be 44 μmol m−2h−1.  相似文献   

7.
The kinetic parameters Km and Vmax for urea uptake by Melosira italica were determined at 160 μeinsteins m−2 s−1 and in the dark. The transport systems showed an affinity for the substrate and a storing capacity in the dark (Km = 65.07 μM; Vmax = 2.18 nmoles 105 cells −1 h−1) greater than under 160 μE m−2 s −1 (Km = 111.2 μM; Vmax = 1.11 nmoles 105 cells−1 h−1). Similarly, a reduction in consumption rate of urea under increasing photon flux densities was observed. The use of an inhibitor (potassium cyanide) indicated that the uptake process requires metabolic energy. That urea transport is more important in darkness, may constitute a survival strategy in which this compound is utilized by cells mainly during heterotrophic growth.  相似文献   

8.
Eco-physiological responses of nitrogen-fixing cyanobacteria to light   总被引:1,自引:0,他引:1  
The eco-physiological responses of three nitrogen-fixing cyanobacteria (N-fixing cyanobacteria), Aphanizomenon gracile, Anabaena minderi, and Ana. torques-reginae, to light were assessed under nutrient saturation. The N-fixing cyanobacteria were isolated into monocultures from a natural bloom in a shallow colored lake and their growth irradiance parameters and pigment composition were assessed. The different ecological traits related to light use (μmax, α, I k) suggest that these N-fixing cyanobacteria are well adapted to low light conditions at sufficient nutrients, yet interspecific differences were observed. Aphanizomenon gracile and Anabaena minderi had high relative growth rates at low irradiances (ca. 70% of those in high light), low half saturation constant for light-limited growth (I k < 9.09 μmol photon m−2 s−1) and high efficiency (α < 0.11 day−1 μmol photon−1 m2 s). Conversely, Ana. torques-reginae showed poorer light competitiveness: low relative growth rates at low irradiances (ca. 40% of those in high light), low α (0.009 day−1 μmol photon−1 m2 s) and higher I k (35.5 μmol photon m−2 s−1). Final densities in Aphanizomenon gracile and Anabaena minderi reached bloom densities at irradiances above 30 μmol photon m−2 s−1 with different hierarchy depending on irradiance, whereas Ana. torques-reginae never achieved bloom densities. All species had very low densities at irradiances ≤17 μmol photon m−2 s−1, thus no N-fixing blooms would be expected at these irradiances. Also, under prolonged darkness and at lowest irradiance (0 and 3 μmol photon m−2 s−1) akinetes were degraded, suggesting that in ecosystems with permanently dark sediments, the prevalence of N-fixing cyanobacteria should not be favored. All species displayed peaks of phycocyanin, but no phycoeritrin, probably due to the prevailing red light in the ecosystem from which they were isolated.  相似文献   

9.
Microphytobenthos production in the Gulf of Fos, French Mediterranean coast   总被引:1,自引:1,他引:0  
Microphytobenthic oxygen production was studied in the Gulf of Fos (French Mediterranean coast) during 1991/1992 using transparent and dark benthic chambers. Nine stations were chosen in depths ranging from 0.5 to 13 m, which represents more than 60% of bottoms in the Gulf. Positive net microphytobenthic oxygen production was seasonally detected down to 13 m; the maximum value attained was 60 mg O2 m−2 h−1 (0.7–0.8 g O2 m−2 d−1) in sediments at 0.5 m depth during spring and winter. Respiration rates were maximum in the sediments located at the mussel farm (5 m), in the center of the Gulf, with 135 mg O2 m−2 h−1 in spring (3.2 g O2 m−2 d−1); in the other locations, it ranged from 3.3 to 58.2 mg O2 m−2 h−1 (0.08–1.4 g O2 m−2 d−1). Compared to phytoplankton, microphytobenthos production was higher only in the bottoms < 1 m depth. In deeper bottom waters, phytoplankton production could be absent due to light limitation, while microphytobenthos was still productive. Phytoplankton production m−2 was generally higher than microphytobenthic production. Microphytobenthic biomass, higher than phytoplanktonic, varied from 27 to 379 mg Chl a m−2, the maximum in the mussel farm sediments, with the minimum in sandy shallow bottoms. Pigment analysis showed that microphytobenthos consisted mainly of diatoms (Chl c and fucoxanthin) but other algal groups containing Chl b could become seasonally important. A Principal Component Analysis suggested that the main statistical factors explaining the distribution of our observations may be interpreted in terms of enrichment in phaeopigments and light; the role of Chl a appearing paradoxically as secondary in benthic production rates. Phaeopigments are mainly constituted by phaeophorbides, which indicate grazing processes. The influence of the mussel farm on the oxygen balance is noticeable in the whole Gulf.  相似文献   

10.
The effects of UVB on the kinetics of stem elongation of wild type (WT) and photomorphogenic mutants of tomato were studied by using linear voltage transducers connected to a computer. Twenty-one or twenty-six-day-old plants, grown in 12 h white light (150 μmol m−2 s−1 PAR)/12 h dark cycles, were first transferred to 200 μmol m−2 s−1 monochromatic yellow light for 12 h, then irradiated with 0.1 or 4.5 μmol m−2 s−1 UVB for 12 h and finally kept in darkness for another 24 h. The measurements of the kinetics of stem elongation started after 4 h under yellow light. Significant differences in stem growth during the irradiation with yellow light, as well as during the dark period, were found between the genotypes. In darkness, the magnitude of stem growth followed the order: tri > AC = fri > MMau > hp1. Two factors determined the large differences of growth in darkness: 1) the different stem elongation rate (SER) and 2) the different duration of the growing phase among the genotypes. In darkness the stem growth of au and hp1 mutants lasted for about 18 h, whereas it continued for the whole experimental period (36 h) in the other genotypes. UVB irradiation substantially reduced elongation growth of all genotypes (4.5 μmol m−2 s−1 being more effective than 0.1 μmol m−2 s−1). Both fluence rates of UVB induced a detectable reduction of SER already after 15 min of irradiation. Red light inhibited, while far red light promoted stem growth of all the genotypes tested. fri (phyA null), tri (phyB1 null), hp1 (exhibiting exaggerated phytochrome responses) mutants and WT tomato showed similar levels of UVB–induced inhibition of growth, while the aurea mutant showed the largest growth inhibition during the 12 h of irradiation. These results indicate that phytochrome is not directly involved in UVB control of stem elongation. The results of dichromatic irradiations UVB + red or UVB + far red indicate the presence of distinct and additive action of UVB photoreceptor and of the phytochrome system in the photoregulation of stem growth. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
The branching zooxanthellate soft coral Sinularia flexibillis releases antimicrobial and toxic compounds with potential pharmaceutical importance. As photosynthesis by the symbiotic algae is vital to the host, the light-dependency of the coral, including its specific growth rate (μ day−1) and the physiological response to a range of light intensities (10–1,000 μmol quanta m−2 s−1) was studied for 12 weeks. Although a range of irradiances from 100 to 400 μmol quanta m−2 s−1 was favorable for S. flexibilis, based on chlorophyll content, a light intensity around 100 μmol quanta m−2 s−1 was found to be optimal. The contents of both zooxanthellae and chlorophyll a were highest at 100 μmol quanta m−2 s−1. The specific budding rate showed almost the same pattern as the specific growth rate. The concentration of the terpene flexibilide, produced by this species, increased at high light intensities (200–600 μmol quanta m−2 s−1).  相似文献   

12.
The vitamin content of microalgae used in aquaculture   总被引:4,自引:0,他引:4  
The vitamin content in four Australian microalgae, a Nannochloropsis-like sp., Pavlova pinguis, Stichococcus sp. and Tetraselmis sp., were examined. These were grown under a 12:12 h light:dark regimen (100 μmol photon m−2s−1) and harvested during late-logarithmic phase. Typically, the content showed a two- to three fold range between the species. When expressed on a dry weight basis, the content of ascorbate ranged from 1.3 to 3.0 mg g−1, β-carotene from 0.37 to 1.05 mg g−1, α-tocopherol from 0.07 to 0.29 mg g−1, thiamine from 29 to 109 μg g−1, riboflavin from 25 to 50 μg g−1, total folates from 17 to 24 μg g−1, pyridoxine from 3.6 to 17 μg g−1, cobalamin from 1.70 to 1.95 μg g−1 and biotin from 1.1 to 1.9 μg g−1. Retinol was detected only in Tetraselmis sp. (2.2 μg g−1); any vitamins D2 or D3 were below the detection limit (≤0.45 μg g−1). Nannochloropsis sp. was also grown under a 24:0 h light:dark light cycle and harvested at stationary phase. The content of most vitamins in Nannochloropsis sp. cultures differed significantly, and the degree of variation was similar to that observed between the four species grown under 12:12 h light:dark regimen (100 μmol photon m−2s−1) and harvested during late-logarithmic phase. Thiamine content was also examined in six non-Australian strains commonly used in aquaculture, Chaetoceros muelleri, Thalassiosira pseudonana, Nannochloris atomus, Nannochloropsis oculata, Isochrysis sp. (T.ISO) and Pavlova lutheri. Values (average 61 μg g−1; range 40 to 82) were similar to those in the Australian strains (average 61 μg g−1; range 29 to 109) and increased during stationary phase (average 94 μg g−1; 38 to 131). Comparison of the data with the known nutritional requirements for marine fish species and prawns suggests that the microalgae should provide excess or adequate levels of the vitamins for aquaculture food chains. The data may be used to guide the content of vitamins included in micro-diets developed as replacements for live diets. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Our 1 year study was aimed at assessing seasonal patterns and controls on phytoplankton primary production (PPR) and biomass (chlorophyll a) in a fourth order section of the middle Cape Fear River in North Carolina, USA, and to determine the impact of three low-head lock and dam (LD) structures on these variables within the 70 km study reach of this coastal river. Mean concentrations of NO3 –N, NH4 +–N and soluble reactive phosphorus (SRP) averaged 52.9, 6.0, and 3.6 μmol l−1 in monthly sampling, while the average light attenuation coefficient was 2.4 m−1. The average euphotic depth was 2.1 m. Nutrient concentrations and attenuation coefficients were not significantly different above versus below each LD, or along the entire study reach. Significantly higher concentrations of dissolved O2 below versus above each LD were attributed to re-aeration during spillway transit. No seasonal pattern in physicochemical properties was apparent. Phytoplankton chlorophyll a concentrations ranged from <1 to 36 μg l−1, while rates of primary production ranged from 18 to 2,580 mg C m−2 day−1, with values for both variables peaking in the spring and early summer. Chlorophyll a and primary productivity values were consistently higher above versus below each LD in May and June suggesting a seasonal effect, but values were otherwise similar such that overall means were not significantly different. Several factors point to light as the primary control on phytoplankton in the middle Cape Fear River: high nutrient concentrations; a low ratio of euphotic : mixing depth (0.46); progressive increases in chlorophyll a and radiocarbon uptake in all treatments in quarterly nutrient enrichment bioassays conducted at levels of irradiance elevated relative to in situ river values; and consistently low quarterly values of (maximum rate of chlorophyll-normalized C uptake; ≤3.7 mg C mg chl a−1 h−1) and I k (light saturation parameter; ≤104 μmol photons m−2 s−1) for photosynthetic light–response (PI) curves. Handling editor: L. Naselli-Flores  相似文献   

14.
Photosynthetic Response of Carrots to Varying Irradiances   总被引:7,自引:3,他引:4  
Kyei-Boahen  S.  Lada  R.  Astatkie  T.  Gordon  R.  Caldwell  C. 《Photosynthetica》2003,41(2):301-305
Response to irradiance of leaf net photosynthetic rates (P N) of four carrot cultivars: Cascade, Caro Choice (CC), Oranza, and Red Core Chantenay (RCC) were examined in a controlled environment. Gas exchange measurements were conducted at photosynthetic active radiation (PAR) from 100 to 1 000 μmol m−2 s−1 at 20 °C and 350 μmol (CO2) mol−1(air). The values of P N were fitted to a rectangular hyperbolic nonlinear regression model. P N for all cultivars increased similarly with increasing PAR but Cascade and Oranza generally had higher P N than CC. None of the cultivars reached saturation at 1 000 μmol m−2 s−1. The predicted P N at saturation (P Nmax) for Cascade, CC, Oranza, and RCC were 19.78, 16.40, 19.79, and 18.11 μmol (CO2) m−2 s−1, respectively. The compensation irradiance (I c) occurred at 54 μmol m−2 s−1 for Cascade, 36 μmol m−2 s−1 for CC, 45 μmol m−2 s−1 for Oranza, and 25 μmol m−2 s−1 for RCC. The quantum yield among the cultivars ranged between 0.057–0.033 mol(CO2) mol−1(PAR) and did not differ. Dark respiration varied from 2.66 μmol m−2 s−1 for Cascade to 0.85 μmol m−2 s−1 for RCC. As P N increased with PAR, intercellular CO2 decreased in a non-linear manner. Increasing PAR increased stomatal conductance and transpiration rate to a peak between 600 and 800 μmol m−2 s−1 followed by a steep decline resulting in sharp increases in water use efficiency. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
The effect of light intensity (50–300 μmol photons m−2 s−1) and temperature (15–50°C) on chlorophyll a, carotenoid and phycobiliprotein content in Arthronema africanum biomass was studied. Maximum growth rate was measured at 300 μmol photons m−2 s−1 and 36°C after 96 h of cultivation. The chlorophyll a content increased along with the increase in light intensity and temperature and reached 2.4% of dry weight at 150 μmol photons m−2 s−1 and 36°C, but it decreased at higher temperatures. The level of carotenoids did not change significantly under temperature changes at illumination of 50 and 100 μmol photons m−2 s−1. Carotenoids were about 1% of the dry weight at higher light intensities: 150 and 300 μmol photons m−2 s−1. Arthronema africanum contained C-phycocyanin and allophycocyanin but no phycoerythrin. The total phycobiliprotein content was extremely high, more than 30% of the dry algal biomass, thus the cyanobacterium could be deemed an alternative producer of C-phycocyanin. A highest total of phycobiliproteins was reached at light intensity of 150 μmol photons m−2 s−1 and temperature of 36°C, C-phycocyanin and allophycocyanin amounting, respectively, to 23% and 12% of the dry algal biomass. Extremely low (<15°C) and high temperatures (>47°C) decreased phycobiliprotein content regardless of light intensity.  相似文献   

16.
Size-fractionated chlorophyll a (Chla)-specific productivity (μgC μgChla −1 h−1) was measured at 11 stations off the northern coast of the South Shetland Islands during summer. The Chla-specific productivity of the 2- to 10 or 10- to 330-μm fraction was highest at 100% and 23% light depths. The Chla-specific productivity of the 2- to 10-μm fraction was generally highest, and that of the <2 or 10- to 330-μm fraction was sometimes highest at 12% and 1% light depths. Temperature was less than 3°C within the euphotic zone at all stations. The hypothesis of Shiomoto et al., according to which Chla-specific productivity of picophytoplankton (<2 μm) is not significantly higher than that of larger phytoplankton (>2 μm) in water colder than 10°C, was supported on condition that light is not limited for larger phytoplankton. Received: 16 September 1997 / Accepted: 8 December 1997  相似文献   

17.
Biofilms formed by the green alga Trentepohlia aurea could be a useful tool in the removal of nitrate and phosphate from water. When a prepared biofilter was dampened with medium and incubated under low light intensity (10 μmol photons m−2 s−1) between 5 and 50 μmol photons m−2 s−1, the efficiency of removal of inorganic compounds from water was higher without the decomposition of chlorophylls in the cells. Algal cells immobilized on a glass fiber filter could be kept for 12 weeks under dark conditions at 4°C in the refrigerator. We tried to construct a laboratory-scale photobioreactor for the removal of inorganic nitrogen and phosphate from water by the biofilm. In this study, the synthetic wastewater was prepared by diluting 18-fold Bold’s basal medium with deionized water. The photobioreactor could efficiently remove nitrate and phosphate from the synthetic wastewater under continuous illumination. The removal ability of nitrate and phosphate per sheet of the biofilter in the photobioreactor exhibited about an 8- and 16-fold increase, respectively, in 3 days, compared with the bath experimental results. This study showed that the cycling of wastewater in the reactor by the pump led to a significant improvement in the efficiency of the inorganic ion uptake from water.  相似文献   

18.
Shallow lakes often alternate between two possible states: one clear with submerged macrophytes, and another one turbid, dominated by phytoplankton. A third type of shallow lakes, the inorganic turbid, result from high contents of suspended inorganic material, and is characterized by low phytoplankton biomass and macrophytes absence. In our survey, the structure and photosynthetic properties (based on 14C method) of phytoplankton were related to environmental conditions in these three types of lakes in the Pampa Plain. The underwater light climate was characterized. Clear-vegetated lakes were more transparent (K d 4.5–7.7 m−1), had high DOC concentrations (>45 mg l−1), low phytoplankton Chl a (1.6–2.7 μg l−1) dominated by nanoflagellates. Phytoplankton productivity and photosynthetic efficiency (α ~ 0.03 mgC mgChla −1 h−1 W−1 m2) were relatively low. Inorganic-turbid lakes showed highest K d values (59.8–61.4 m−1), lowest phytoplankton densities (dominated by Bacillariophyta), and Chl a ranged from 14.6 to 18.3 μg l−1. Phytoplankton-turbid lakes showed, in general, high K d (4.9–58.5 m−1) due to their high phytoplankton abundances. These lakes exhibited the highest Chl a values (14.2–125.7 μg l−1), and the highest productivities and efficiencies (maximum 0.56 mgC mgChla −1 h−1 W−1 m2). Autotrophic picoplankton abundance, dominated by ficocianine-rich picocyanobacteria, differed among the shallow lakes independently of their type (0.086 × 105–41.7 × 105 cells ml−1). This article provides a complete characterization of phytoplankton structure (all size fractions), and primary production of the three types of lakes from the Pampa Plain, one of the richest areas in shallow lakes from South America. Handling editor: J. Padisak  相似文献   

19.
Production rates, abundance, chlorophyll a (Chl a) concentrations and pigment composition were measured for three size classes (<2 μm, 2–11 μm and >11 μm) of phytoplankton from May to December 2000 in deep, mesotrophic, alpine lake Mondsee in Austria. The study focuses on differences among phytoplankton size fractions characterised by their surface area to volume ratio ([mml−1: mm3l−1]), pigment distribution patterns and photosynthetic rates. Particular attention was paid to autotrophic picophytoplankton (APP, fraction <2 μm) since this size fraction differed significantly from the two larger size fractions. Among the three fractions, APP showed the highest surface area to volume ratios and a high persistence in the pattern of lipophilic pigments between temporarily and spatially successive samples (about 80% similarity of pigment composition between samples over seasons and depths). The epilimnetic abundance of APP varied seasonally with an annual maximum of 180 × 10cells ml−1 in June (at 4–9 m). The minimum (October at 12 m) was more than an order of magnitude lower (4.9 × 103 ml−1). APP peaked during autumn and contributed between 24% and 42% to the total area-integrated Chl a (10–23 mg m−2) and between 16% and 58% to total area-integrated production (5–64 mg m−2  h−1) throughout seasons.  相似文献   

20.
M. Tretiach  A. Geletti 《Oecologia》1997,111(4):515-522
CO2 exchange of the endolithic lichen Verrucaria baldensis was measured in the laboratory under different conditions of water content, temperature, light, and CO2 concentration. The species had low CO2 exchange rates (maximum net photosynthesis: c. 0.45 μmol CO2 m−2 s−1; maximum dark respiration: c. 0.3 μmol CO2 m−2 s−1) and a very low light compensation point (7 μmol photons m−2 s−1 at 8°C). The net photosynthesis/respiration quotient reached a maximum at 9–15°C. Photosynthetic activity was affected only after very severe desiccation, when high resaturation respiratory rates were measured. Microclimatic data were recorded under different weather conditions in an abyss of the Trieste Karst (northeast Italy), where the species was particularly abundant. Low photosynthetically active radiation (normally below 40 μmol photons m−2 s−1), very high humidities (over 80%), and low, constant temperatures were measured. Thallus water contents sufficient for CO2 assimilation were often measured in the absence of condensation phenomena. Received: 22 September 1996 / Accepted: 26 April 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号