首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent evidence suggests that cell-to-cell difference at the gene expression level is an order of magnitude greater than previously thought even for isogenic bacterial populations. Such gene expression heterogeneity determines the fate of individual bacterial cells in populations and could also affect the ultimate fate of populations themselves. To quantify the heterogeneity and its biological significance, quantitative methods to measure gene expression in single bacterial cells are needed. In this work, we developed two SYBR Green-based RT-qPCR methods to determine gene expression directly in single bacterial cells. The first method involves a single-tube operation that can analyze one gene from each bacterial cell. The second method is featured by a two-stage protocol that consists of RNA isolation from a single bacterial cell and cDNA synthesis in the first stage, and qPCR in the second stage, which allows determination of expression level of multiple genes simultaneously for single bacterial cells of both gram-positive and negative. We applied the methods to stress-treated (i.e. low pH and high temperature) Escherichia coli populations. The reproducible results demonstrated that the method is sensitive enough not only for measuring cellular responses at the single-cell level, but also for revealing gene expression heterogeneity among the bacterial cells. Furthermore, our results showed that the two-stage method can reproducibly measure multiple highly expressed genes from a single E. coli cell, which exhibits important foundation for future development of a high throughput and lab-on-chips whole-genome RT-qPCR methodology for single bacterial cells.  相似文献   

2.
3.
We describe a combined immunocytochemistry/in situ hybridization technique which allows for the simultaneous localization of protein and mRNA in a single cell. We have carried out these studies either on non-innervated skeletal myotubes or on myotubes which we have innervated with spinal cord explants or ciliary neurons. Our methods allowed us to detect acetylcholine receptor gene mRNA sequences which are expressed in low abundance within the cells and to determine the intracellular and intranuclear domains where these sequences are concentrated, as well as to identify neurons and their processes. The isotopic detection of RNA in combination with fluorescence microscopy produces high-resolution double-label images, with little background and good preservation of morphology, providing a powerful tool for detection of gene expression and protein content at the single-cell level.  相似文献   

4.
For more than 60 years, RNA has been detectable in fixed cells and tissues by relatively specific staining methods. More recently, it has become possible to study RNA in unfixed, live cells. This review article describes how the intracellular dynamics and localization of RNA in vivo can be studied by microinjection of fluorescent RNA into cells- an approach we have termed Fluorescent RNA Cytochemistry. Depending on the particular RNA species under investigation, Fluorescent RNA Cytochemistry can operate as a "stain" to reveal intracellular sites at which a given RNA resides, or as a "tracer" to allow movements of a dynamically translocating RNA to be followed in the living cell. Several examples of Fluorescent RNA Cytochemistry are presented, collectively illustrating the range of applicability this approach offers in the toolbox of gene expression, studied as in vivo cell biology.  相似文献   

5.
6.
7.
8.
9.
细菌非编码RNA是一类新发现的基因表达调控因子,通过与靶mRNA配对,导致mRNA翻译和稳定性的变化,从而影响细胞的各种生理功能,如个体发育、翻译激活与抑制、细菌毒性等,而且一个单独的非编码RNA就能调控大量基因并对细胞生理产生深远影响。近年来诸多研究证实,非编码RNA与细菌耐药性也存在一定的关系。我们对此进行简要综述,为细菌耐药性的研究奠定基础。  相似文献   

10.
11.
Significant progress has been made in the study of ftsZ expression and the topology of FtsZ protein localization in Escherichia coli cells. Exciting results on the identification of new genes required for chromosome resolution and partitioning after the completion of DNA synthesis have also been reported. A recent area of study is asymmetric cell division and its role in differentiation in Bacillus subtilis and Caulobacter crescentus. Biochemical activities of bacterial cell division gene products are also beginning to be addressed.  相似文献   

12.
13.
14.
随着分子生物技术的不断进步,转录组学技术已广泛应用于生物基因表达水平的研究。近年来,针对微生物转录组学的研究技术也在不断发展。在基因层面上,由片段RNA与微生物样本进行互补验证,发展到直接对全长RNA进行测序得到序列信息;在空间上,由传统群体转录组发展到空间、单细胞以及表观等层面的研究。随着转录组学技术在微生物研究领域中的应用,相应的缺陷也逐渐显现并不断被完善。本文主要是对微生物研究方面传统的和新型的转录组学技术进行了总结归纳,为微生物转录组学研究提供参考。  相似文献   

15.
16.
Monitoring gene expression dynamics on the single cell level provides important information on cellular heterogeneity and stochasticity, and potentially allows for more accurate quantitation of gene expression processes. We here study bacterial senders and receivers genetically engineered with components of the quorum sensing system derived from Aliivibrio fischeri on the single cell level using microfluidics-based bacterial chemostats and fluorescence video microscopy. We track large numbers of bacteria over extended periods of time, which allows us to determine bacterial lineages and filter out subpopulations within a heterogeneous population. We quantitatively determine the dynamic gene expression response of receiver bacteria to varying amounts of the quorum sensing inducer N-3-oxo-C6-homoserine lactone (AHL). From this we construct AHL response curves and characterize gene expression dynamics of whole bacterial populations by investigating the statistical distribution of gene expression activity over time. The bacteria are found to display heterogeneous induction behavior within the population. We therefore also characterize gene expression in a homogeneous bacterial subpopulation by focusing on single cell trajectories derived only from bacteria with similar induction behavior. The response at the single cell level is found to be more cooperative than that obtained for the heterogeneous total population. For the analysis of systems containing both AHL senders and receiver cells, we utilize the receiver cells as ‘bacterial sensors’ for AHL. Based on a simple gene expression model and the response curves obtained in receiver-only experiments, the effective AHL concentration established by the senders and their ‘sending power’ is determined.  相似文献   

17.
Yarovoi SV  Pederson T 《Gene》2001,275(1):73-81
Although several systems are now available for the controlled expression of eukaryotic genes transcribed by RNA polymerase II, regulated expression has been more difficult to achieve in the case of genes transcribed by RNA polymerase III. In the present study the gene for bacteriophage T7 RNA polymerase, implanted with a eukaryotic nuclear localization signal, was linked to a 5'-flanking ecdysone-responsive promoter and stably transformed human cell lines were constructed in which the ecdysone promoter-T7 RNA polymerase gene had been integrated intact, as demonstrated by a polymerase chain reaction assay. Exposure of these cells to the ecdysone analog ponasterone A resulted in the appearance of a single protein having the expected size of T7 RNA polymerase in immunoblots of cell extracts probed with an affinity purified antibody raised against the C-terminus of T7 RNA polymerase. The induced T7 RNA polymerase was exclusively localized in the nucleus of induced cells and was undetectable in uninduced cells either by immunoblotting or immunofluorescence. The induced T7 RNA polymerase was present at numerous punctate foci dispersed throughout the nucleoplasmic regions of the nucleus and was also present in the nucleoli. Both of these observed intranuclear localizations have relevance to the potential applications of this system.  相似文献   

18.
In situ detection of animal and plant microRNAs   总被引:1,自引:0,他引:1  
  相似文献   

19.
The tethered particle motion (TPM) allows the direct detection of activity of a variety of biomolecules at the single molecule level. First pioneered for RNA polymerase, it has recently been applied also to other enzymes. In this work we employ TPM for a systematic investigation of the kinetics of DNA looping by wild-type Lac repressor (wt-LacI) and by hinge mutants Q60G and Q60 + 1. We implement a novel method for TPM data analysis to reliably measure the kinetics of loop formation and disruption and to quantify the effects of the protein hinge flexibility and of DNA loop strain on such kinetics. We demonstrate that the flexibility of the protein hinge has a profound effect on the lifetime of the looped state. Our measurements also show that the DNA bending energy plays a minor role on loop disruption kinetics, while a strong effect is seen on the kinetics of loop formation. These observations substantiate the growing number of theoretical studies aimed at characterizing the effects of DNA flexibility, tension and torsion on the kinetics of protein binding and dissociation, strengthening the idea that these mechanical factors in vivo may play an important role in the modulation of gene expression regulation.  相似文献   

20.
Stem cells(SCs) with their self-renewal and pluripotent differentiation potential,show great promise for therapeutic applications to some refractory diseases such as stroke, Parkinsonism, myocardial infarction, and diabetes. Furthermore, as seed cells in tissue engineering, SCs have been applied widely to tissue and organ regeneration. However, previous studies have shown that SCs are heterogeneous and consist of many cell subpopulations. Owing to this heterogeneity of cell states, gene expression is highly diverse between cells even within a single tissue,making precise identification and analysis of biological properties difficult, which hinders their further research and applications. Therefore, a defined understanding of the heterogeneity is a key to research of SCs. Traditional ensemble-based sequencing approaches, such as microarrays, reflect an average of expression levels across a large population, which overlook unique biological behaviors of individual cells, conceal cell-to-cell variations, and cannot understand the heterogeneity of SCs radically. The development of high throughput single cell RNA sequencing(scRNA-seq) has provided a new research tool in biology, ranging from identification of novel cell types and exploration of cell markers to the analysis of gene expression and predicating developmental trajectories. scRNA-seq has profoundly changed our understanding of a series of biological phenomena. Currently, it has been used in research of SCs in many fields, particularly for the research of heterogeneity and cell subpopulations in early embryonic development. In this review, we focus on the scRNA-seq technique and its applications to research of SCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号