首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human pathogenic fungus Cryptococcus neoformans secretes a phospholipase enzyme that demonstrates phospholipase B (PLB), lysophospholipase hydrolase and lysophospholipase transacylase activities. This enzyme has been postulated to be a cryptococcal virulence factor. We cloned a phospholipase-encoding gene (PLB1) from C. neoformans and constructed plb1 mutants using targeted gene disruption. All three enzyme activities were markedly reduced in the mutants compared with the wild-type parent. The plb1 strains did not have any defects in the known cryptococcal virulence phenotypes of growth at 37 degrees C, capsule formation, laccase activity and urease activity. The plb1 strains were reconstituted using the wild-type locus and this resulted in restoration of all extracellular PLB activities. In vivo testing demonstrated that the plb1 strain was significantly less virulent than the control strains in both the mouse inhalational model and the rabbit meningitis model. We also found that the plb1 strain exhibited a growth defect in a macrophage-like cell line. These data demonstrate that secretory phospholipase is a virulence factor for C. neoformans.  相似文献   

2.
Glycoproteins exit the endoplasmic reticulum (ER) of the yeast Saccharomyces cerevisiae in coat protein complex II (COPII) coated vesicles. The coat consists of the essential proteins Sec23p, Sec24p, Sec13p, Sec31p, Sar1p and Sec16p. Sec24p and its two nonessential homologues Sfb2p and Sfb3p have been suggested to serve in cargo selection. Using temperature-sensitive sec24-1 mutants, we showed previously that a secretory glycoprotein, Hsp150, does not require functional Sec24p for ER exit. Deletion of SFB2, SFB3 or both from wild type or the deletion of SFB2 from sec24-1 cells did not affect Hsp150 transport. SFB3 deletion has been reported to be lethal in sec24-1. However, here we constructed a sec24-1 Deltasfb3 and a sec24-1 Deltasfb2 Deltasfb3 strain and show that Hsp150 was secreted slowly in both. Turning off the SEC24 gene did not inhibit Hsp150 secretion either, and the lack of SEC24 expression in a Deltasfb2 Deltasfb3 deletant still allowed some secretion. The sec24-1 Deltasfb2 Deltasfb3 mutant grew slower than sec24-1. The cells were irregularly shaped, budded from random sites and contained proliferated ER at permissive temperature. At restrictive temperature, the ER formed carmellae-like proliferations. Our data indicate that ER exit may occur in vesicles lacking a full complement of Sec23p/24p and Sec13p/31p, demonstrating diversity in the composition of the COPII coat.  相似文献   

3.
The cell wall of pathogenic fungi such as Cryptococcus neoformans , provides a formidable barrier to secrete virulence factors that produce host cell damage. To study secretion of virulence factors to the cell periphery, sec6 RNAi mutant strains of C. neoformans were tested for virulence factor expression. The studies reported here show that SEC6 RNAi mutant strains were defective in a number of virulence factors including laccase, urease as well as soluble polysaccharide and demonstrated attenuated virulence in mice. Further analysis by transmission electron microscopy detected the production of abundant extracellular exosomes in wild-type strains containing empty plasmid, but a complete absence in the i SEC6 strain. In addition, a green fluorescent protein–laccase fusion protein demonstrated aberrant localization within cytoplasmic vesicles in i SEC6 strains. In contrast, i SEC6 strains retained normal growth at 37°C, as well as substantially normal capsule formation, phospholipase activity and total secreted protein. These results provide the first molecular evidence for the existence of fungal exosomes and associate these vesicles with the virulence of C. neoformans .  相似文献   

4.
We studied superoxide dismutases (SODs) in the encapsulated yeast Cryptococcus neoformans (Cn) variety gattii to analyse the role of mitochondrial MnSOD (SOD2) in fungal biology and virulence. SOD2 was cloned from a Cn cosmid library, sod2 mutant and sod2 + SOD2 reconstituted strains were constructed by homologous recombination, and two sod1sod2 double mutants were constructed by replacing SOD2 in the sod1 mutant with the sod2::HYG allele. The SOD2 protein (SOD2p) encoded 225 amino acids, with 36-66% identity with other fungal SOD2ps. SOD2 deletion rendered Cn highly growth-defective at 37 degrees C in 19-20% oxygen (normal air), and this defect was reversed by limiting oxygen to 1.3% as well in the presence of antioxidant, ascorbic acid. The sod2 mutant accumulated significantly more reactive oxygen species (ROS) at 37 degrees C as well at 30 degrees C in the presence of antimycin A, suggesting that SOD2p is the primary defence of Cn against the superoxide anion (O(2) (.-)) in the mitochondria. The sod2 was also highly susceptible to redox-cycling agents, high salt and nutrient limitations. The sod2 mutant was avirulent in intranasally infected mice and markedly attenuated in its virulence in intravenously infected mice. The virulence defect of sod2 mutant appeared related to its growth defects in high oxygen environment, but not resulting from increased sensitivity to oxidative killing by phagocytes. The sod1sod2 double mutants were avirulent in mice. Additionally, sod1sod2 double mutants showed a marked reduction in the activities of other known Cn virulence factors; and they were more susceptible to PMN killing than was the sod2 single mutant. Previously, we reported that the attenuation of sod1 mutant in mice was resulting from enhanced susceptibility to phagocyte killing, combined with a reduction in the activities of a number of virulence factors. Thus, SOD1p and SOD2p play distinct roles in the biology and virulence of Cn var. gattii via independent modes of action.  相似文献   

5.
The Sec23p/Sec24p complex functions as a component of the COPII coat in vesicle transport from the endoplasmic reticulum. Here we characterize Saccharomyces cerevisiae SEC24, which encodes a protein of 926 amino acids (YIL109C), and a close homologue, ISS1 (YNL049C), which is 55% identical to SEC24. SEC24 is essential for vesicular transport in vivo because depletion of Sec24p is lethal, causing exaggeration of the endoplasmic reticulum and a block in the maturation of carboxypeptidase Y. Overproduction of Sec24p suppressed the temperature sensitivity of sec23-2, and overproduction of both Sec24p and Sec23p suppressed the temperature sensitivity of sec16-2. SEC24 gene disruption could be complemented by overexpression of ISS1, indicating functional redundancy between the two homologous proteins. Deletion of ISS1 had no significant effect on growth or secretion; however, iss1Delta mutants were found to be synthetically lethal with mutations in the v-SNARE genes SEC22 and BET1. Moreover, overexpression of ISS1 could suppress mutations in SEC22. These genetic interactions suggest that Iss1p may be specialized for the packaging or the function of COPII v-SNAREs. Iss1p tagged with His(6) at its C terminus copurified with Sec23p. Pure Sec23p/Iss1p could replace Sec23p/Sec24p in the packaging of a soluble cargo molecule (alpha-factor) and v-SNAREs (Sec22p and Bet1p) into COPII vesicles. Abundant proteins in the purified vesicles produced with Sec23p/Iss1p were indistinguishable from those in the regular COPII vesicles produced with Sec23p/Sec24p.  相似文献   

6.
The Saccharomyces cerevisiae SEC14 gene encodes a cytosolic factor that is required for secretory protein movement from the Golgi complex. That some conservation of SEC14p function may exist was initially suggested by experiments that revealed immunoreactive polypeptides in cell extracts of the divergent yeasts Kluyveromyces lactis and Schizosaccharomyces pombe. We have cloned and characterized the K. lactis SEC14 gene (SEC14KL). Immunoprecipitation experiments indicated that SEC14KL encoded the K. lactis structural homolog of SEC14p. In agreement with those results, nucleotide sequence analysis of SEC14KL revealed a gene product of 301 residues (Mr, 34,615) and 77% identity to SEC14p. Moreover, a single ectopic copy of SEC14KL was sufficient to render S. cerevisiae sec14-1(Ts) mutants, or otherwise inviable sec14-129::HIS3 mutant strains, completely proficient for secretory pathway function by the criteria of growth, invertase secretion, and kinetics of vacuolar protein localization. This efficient complementation of sec14-129::HIS3 was observed to occur when the rates of SEC14pKL and SEC14p synthesis were reduced by a factor of 7 to 10 with respect to the wild-type rate of SEC14p synthesis. Taken together, these data provide evidence that the high level of structural conservation between SEC14p and SEC14pKL reflects a functional identity between these polypeptides as well. On the basis of the SEC14p and SEC14pKL primary sequence homology to the human retinaldehyde-binding protein, we suggest that the general function of these SEC14p species may be to regulate the delivery of a hydrophobic ligand to Golgi membranes so that biosynthetic secretory traffic can be supported.  相似文献   

7.
The SEC14 gene encodes an essential phosphatidylinositol (PtdIns) transfer protein required for formation of Golgi-derived secretory vesicles in yeast. Suppressor mutations that rescue temperature-sensitive sec14 mutants provide an approach for determining the role of Sec14p in secretion. One suppressor, sac1-22, causes accumulation of PtdIns(4)P. SAC1 encodes a phosphatase that can hydrolyze PtdIns(4)P and certain other phosphoinositides. These findings suggest that PtdIns(4)P is limiting in sec14 cells and that elevation of PtdIns(4)P production can suppress the secretory defect. Correspondingly, we found that PtdIns(4)P levels were decreased significantly in sec14-3 mutants shifted to 37 degrees C and that sec14-3 cells could grow at an otherwise nonpermissive temperature (34 degrees C) when carrying a plasmid overexpressing PIK1, encoding one of two essential PtdIns 4-kinases. This effect is specific because overexpression of the other PtdIns 4-kinase gene (STT4) or a PtdIns 3-kinase gene (VPS34) did not rescue sec14-3 cells. To further address Pik1p function in secretion, two different pik1(ts) mutants were examined. Upon shift to restrictive temperature (37 degrees C), the PtdIns(4)P levels dropped by about 60% in both pik1(ts) strains within 1 h. During the same period, cells displayed a reduction (40-50%) in release of a secreted enzyme (invertase). However, similar treatment did not effect maturation of a vacuolar enzyme (carboxypeptidase Y). These findings indicate that, first, PtdIns(4)P limitation is a major contributing factor to the secretory defect in sec14 cells; second, Sec14p function is coupled to the action of Pik1p, and; third, PtdIns(4)P has an important role in the Golgi-to-plasma membrane stage of secretion.  相似文献   

8.
To investigate several key aspects of phosphatidylinositol transfer protein (PI-TP) function in eukaryotic cells, rat PI-TP was expressed in yeast strains carrying lesions in SEC14, the structural gene for yeast PI-TP (SEC14p), whose activity is essential for Golgi secretory function in vivo. Rat PI-TP expression effected a specific complementation of sec14ts growth and secretory defects. Complementation of sec14 mutations was not absolute as rat PI-TP expression failed to rescue sec14 null mutations. This partial complementation of sec14 lesions by rat PI-TP correlated with inability of the mammalian protein to stably associate with yeast Golgi membranes and was not a result of rat PI-TP stabilizing the endogenous sec14ts gene product. These collective data demonstrate that while the in vitro PI-TP activity of SEC14p clearly reflects some functional in vivo property of SEC14p, the PI-TP activity is not the sole essential activity of SEC14p. Those data further identify an efficient Golgi targeting capability as a likely essential feature of SEC14p function in vivo. Finally, the data suggest that stable association of SEC14p with yeast Golgi membranes is not a simple function of its lipid-binding properties, indicate that the amino-terminal 129 SEC14p residues are sufficient to direct a catalytically inactive form of rat PI-TP to the Golgi and provide the first evidence to indicate that a mammalian PI-TP can stimulate Golgi secretory function in vivo.  相似文献   

9.
Mao Y  Kalb VF  Wong B 《Journal of bacteriology》1999,181(23):7235-7242
Candida albicans SEC4 was cloned by complementing the Saccharomyces cerevisiae sec4-8 mutation, and its deduced protein product (Sec4p) was 63% identical to S. cerevisiae Sec4p. One chromosomal SEC4 allele in C. albicans CAI4 was readily disrupted by homologous gene targeting, but efforts to disrupt the second allele yielded no viable null mutants. Although this suggested that C. albicans SEC4 was essential, it provided no information about this gene's functions. Therefore, we constructed a mutant sec4 allele encoding an amino acid substitution (Ser-28-->Asn) analogous to the Ser-17-->Asn substitution in a trans-dominant inhibitor of mammalian Ras protein. GAL1-regulated expression plasmids carrying the mutant sec4 allele (pS28N) had minimal effects in glucose-incubated C. albicans transformants, but six of nine transformants tested grew very slowly in galactose. Incubation of pS28N transformants in galactose also inhibited secretion of aspartyl protease (Sap) and caused 90-nm secretory vesicles to accumulate intracellularly, and plasmid curing restored growth and Sap secretion to wild-type levels. These results imply that C. albicans SEC4 is required for growth and protein secretion and that it functions at a later step in the protein secretion pathway than formation of post-Golgi secretory vesicles. They also demonstrate the feasibility of using inducible dominant-negative alleles to define the functions of essential genes in C. albicans.  相似文献   

10.
Two new temperature-sensitive alleles of SEC3, 1 of 10 late-acting SEC genes required for targeting or fusion of post-Golgi secretory vesicles to the plasma membrane in Saccharomyces cerevisiae, were isolated in a screen for temperature-sensitive secretory mutants that are synthetically lethal with sec4-8. The new sec3 alleles affect early as well as late stages of secretion. Cloning and sequencing of the SEC3 gene revealed that it is identical to profilin synthetic lethal 1 (PSL1). The SEC3 gene is not essential because cells depleted of Sec3p are viable although slow growing and temperature sensitive. All of the sec3 alleles genetically interact with a profilin mutation, pfy1-111. The SEC3 gene in high copy suppresses pfy1-111 and sec5-24 and causes synthetic growth defects with ypt1, sec8-9, sec10-2, and sec15-1. Actin structure is only perturbed in conditions of chronic loss of Sec3p function, implying that Sec3p does not directly regulate actin. All alleles of sec3 cause bud site selection defects in homozygous diploids, as do sec4-8 and sec9-4. This suggests that SEC gene products are involved in determining the bud site and is consistent with a role for Sec3p in determining the correct site of exocytosis.  相似文献   

11.
The pathogenic yeast Cryptococcus neoformans (Cn) var. gattii causes meningoencephalitis in healthy individuals, unlike the better known Cn varieties grubii and neoformans, which are common in immunocompromised individuals. The virulence determinants and mechanisms of host predilection are poorly defined for var. gattii. The present study focused on the characterization of a Cu,Zn superoxide dismutase (SOD1) gene knock-out mutant constructed by developing a DNA transformation system. The sod1 mutant was highly sensitive to the redox cycling agent menadione, and showed fragmentation of the large vacuole in the cytoplasm, but no other defects were seen in growth, capsule synthesis, mating, sporulation, stationary phase survival or auxotrophies for sulphur-containing amino acids. The sod1 mutant was markedly attenuated in virulence in a mouse model, and it was significantly susceptible to in vitro killing by human neutrophils (PMNs). The deletion of SOD1 also resulted in defects in the expression of a number of virulence factors, i.e. laccase, urease and phospholipase. Complementation of the sod1 mutant with SOD1 resulted in recovery of virulence factor expression and menadione resistance, and in restoration of virulence. Overall, these results suggest that the antioxidant function of Cu,Zn SOD is critical for the pathogenesis of the fungus, but is dispensable in its saprobic life. This report constitutes the first instance in which superoxide dismutase has been directly implicated in the virulence of a fungal pathogen.  相似文献   

12.
The COPII coat is required for vesicle budding from the endoplasmic reticulum (ER), and consists of two heterodimeric subcomplexes, Sec23p/Sec24p, Sec13p/Sec31p, and a small GTPase, Sar1p. We characterized a yeast mutant, anu1 (abnormal nuclear morphology) exhibiting proliferated ER as well as abnormal nuclear morphology at the restrictive temperature. Based on the finding that ANU1 is identical to SEC24, we confirmed a temperature-sensitive protein transport from the ER to the Golgi in anu1-1/sec24-20 cells. Overexpression of SFB2, a SEC24 homologue with 56% identity, partially suppressed not only the mutant phenotype of sec24-20 cells but also rescued the SEC24-disrupted cells. Moreover, the yeast two-hybrid assay revealed that Sfb2p, similarly to Sec24p, interacted with Sec23p. In SEC24-disrupted cells rescued by overexpression of SFB2, some cargo proteins were still retained in the ER, while most of the protein transport was restored. Together, these findings strongly suggest that Sfb2p functions as the component of COPII coats in place of Sec24p, and raise the possibility that each member of the SEC24 family of proteins participates directly and/or indirectly in cargo-recognition events with its own cargo specificity at forming ER-derived vesicles.  相似文献   

13.
In the yeast Saccharomyces cerevisiae, Sec13p is required for intracellular protein transport from the ER to the Golgi apparatus, and has also been identified as a component of the COPII vesicle coat structure. Recently, a human cDNA encoding a protein 53% identical to yeast Sec13p has been isolated. In this report, we apply the genetic assays of complementation and synthetic lethality to demonstrate the conservation of function between this human protein, designated SEC13Rp, and yeast Sec13p. We show that two reciprocal human/yeast fusion constructs, encoding the NH2-terminal half of one protein and the COOH-terminal half of the other, can each complement the secretion defect of a sec13-1 mutant at 36 degrees C. The chimera encoding the NH2-terminal half of the yeast protein and the COOH-terminal half of the human protein is also able to complement a SEC13 deletion. Overexpression of either the entire human SEC13Rp protein or the chimera encoding the NH2-terminal half of the human protein and the COOH-terminal half of the yeast protein inhibits the growth of a sec13- 1 mutant at 24 degrees C; this growth inhibition is not seen in a wild- type strain nor in other sec mutants, suggesting that the NH2-terminal half of SEC13Rp may compete with Sec13-1p for a common target. We show by immunoelectronmicroscopy of mammalian cells that SEC13Rp (like the putative mammalian homologues of the COPII subunits Sar1p and Sec23p) resides in the region of the transitional ER. We also show that the distribution of SEC13Rp is not affected by brefeldin A treatment. This report presents the first demonstration of a putative mammalian COPII component functioning in yeast, and highlights a potentially useful approach for the study of conserved mammalian proteins in a genetically tractable system.  相似文献   

14.
Ubiquitination is a reversible protein modification that influences various cellular processes in eukaryotic cells. Deubiquitinating enzymes remove ubiquitin, maintain ubiquitin homeostasis and regulate protein degradation via the ubiquitination pathway. Cryptococcus neoformans is an important basidiomycete pathogen that causes life-threatening meningoencephalitis primarily in the immunocompromised population. In order to understand the possible influence deubiquitinases have on growth and virulence of the model pathogenic yeast Cryptococcus neoformans, we generated deletion mutants of seven putative deubiquitinase genes. Compared to other deubiquitinating enzyme mutants, a ubp5Δ mutant exhibited severely attenuated virulence and many distinct phenotypes, including decreased capsule formation, hypomelanization, defective sporulation, and elevated sensitivity to several external stressors (such as high temperature, oxidative and nitrosative stresses, high salts, and antifungal agents). Ubp5 is likely the major deubiquitinating enzyme for stress responses in C. neoformans, which further delineates the evolutionary divergence of Cryptococcus from the model yeast S. cerevisiae, and provides an important paradigm for understanding the potential role of deubiquitination in virulence by other pathogenic fungi. Other putative deubiquitinase mutants (doa4Δ and ubp13Δ) share some phenotypes with the ubp5Δ mutant, illustrating functional overlap among deubiquitinating enzymes in C. neoformans. Therefore, deubiquitinating enzymes (especially Ubp5) are essential for the virulence composite of C. neoformans and provide an additional yeast survival and propagation advantage in the host.  相似文献   

15.
16.
M K Aalto  H Ronne    S Kernen 《The EMBO journal》1993,12(11):4095-4104
The yeast SEC1 gene encodes a hydrophilic protein that functions at the terminal stage in secretion. We have cloned two yeast genes, SSO1 and SSO2, which in high copy number can suppress sec1 mutations and also mutations in several other late acting SEC genes, such as SEC3, SEC5, SEC9 and SEC15. SSO1 and SSO2 encode small proteins with N-terminal hydrophilic domains and C-terminal hydrophobic tails. The two proteins are 72% identical in sequence and together perform an essential function late in secretion. Sso1p and Sso2p show significant sequence similarity to six other proteins. Two of these, Sed5p and Pep12p, are yeast proteins that function in transport from ER to Golgi and from Golgi to the vacuole, respectively. Also related to Sso1p and Sso2p are three mammalian proteins: epimorphin, syntaxin A/HPC-1 and syntaxin B. A nematode cDNA product also belongs to the new protein family. The new protein family is thus present in a wide variety of eukaryotic cells, where its members function at different stages in vesicular transport.  相似文献   

17.
The SEC14SC gene encodes the phosphatidylinositol/phosphatidylcholine transfer protein (PI/PC-TP) of Saccharomyces cerevisiae. The SEC14SC gene product (SEC14pSC) is associated with the Golgi complex as a peripheral membrane protein and plays an essential role in stimulating Golgi secretory function. We report the characterization of SEC14YL, the structural gene for the PI/PC-TP of the dimorphic yeast Yarrowia lipolytica. SEC14YL encodes a primary translation product (SEC14YL) that is predicted to be a 497-residue polypeptide of which the amino- terminal 300 residues are highly homologous to the entire SEC14pSC, and the carboxyl-terminal 197 residues define a dispensible domain that is not homologous to any known protein. In a manner analogous to the case for SEC14pSC, SEC14pYL localizes to punctate cytoplasmic structures in Y. lipolytica that likely represent Golgi bodies. However, SEC14pYL is neither required for the viability of Y. lipolytica nor is it required for secretory pathway function in this organism. This nonessentiality of SEC14pYL for growth and secretion is probably not the consequence of a second PI/PC-TP activity in Y. lipolytica as cell-free lysates prepared from delta sec14YL strains are devoid of measurable PI/PC-TP activity in vitro. Phenotypic analyses demonstrate that SEC14pYL dysfunction results in the inability of Y. lipolytica to undergo the characteristic dimorphic transition from the yeast to the mycelial form that typifies this species. Rather, delta sec14YL mutants form aberrant pseudomycelial structures as cells enter stationary growth phase. The collective data indicate a role for SEC14pYL in promoting the differentiation of Y. lipolytica cells from yeast to mycelia, and demonstrate that PI/PC-TP function is utilized in diverse ways by different organisms.  相似文献   

18.
The yeast genome contains two genes, designated as PLB2 and PLB3, that are 67% and 62% identical, respectively, to PLB1, which codes for a phospholipase B/lysophospholipase in yeast (Lee, S. K., Patton, J. L., Fido, M., Hines, L. K., Kohlwein, S. D., Paltauf, F., Henry, S. A., and Levin, D. E. (1994) J. Biol. Chem. 269, 19725-19730). Deletion and overexpression studies and in vivo and in vitro activity measurements suggest that both genes indeed code for phospholipases B/lysophospholipases. In cell free extracts of a plb1 plb2 plb3 triple mutant, no phospholipase B activity was detectable. Upon overexpression of PLB2 in a plb1 plb3 mutant background, phospholipase B activity was detectable in the plasma membrane, periplasmic space extracts and the culture supernatant. Similar to Plb1p, Plb2p appears to accept all major phospholipid classes, with a preference for acidic phospholipids including phosphatidylinositol 3',4'-bisphosphate and phosphatidic acid. Consistent with a function as an extracellular lysophospholipase, PLB2 overexpression conferred resistance to lyso-phosphatidylcholine. Deletion of Plb2p function had no effect on glycerophosphoinositol or glycerophosphocholine release in vivo, in contrast to a deletion of Plb3p function, which resulted in a 50% reduction of phosphatidylinositol breakdown and glycerophosphoinositol release from the cells. In vitro, Plb3p hydrolyzes only phosphatidylinositol and phosphatidylserine and, to a lesser extent, their lyso-analogs. Plb3p activity in a plb1 plb2 mutant background was observed in periplasmic space extracts. Both Plb3p and Plb2p display transacylase activity in vitro, in the presence or absence, respectively, of detergent.  相似文献   

19.
Cryptococcus neoformans (Cn) is a significant human pathogen that, despite current treatments, continues to have a high morbidity rate especially in sub-Saharan Africa. The need for more tolerable and specific therapies has been clearly shown. In the search for novel drug targets, the gene for glucosylceramide synthase (GCS1) was deleted in Cn, resulting in a strain (Δgcs1) that does not produce glucosylceramide (GlcCer) and is avirulent in mouse models of infection. To understand the biology behind the connection between virulence and GlcCer, the production and localization of GlcCer must be characterized in conditions that are prohibitive to the growth of Δgcs1 (neutral pH and high CO(2)). These prohibitive conditions are physiologically similar to those found in the extracellular spaces of the lung during infection. Here, using immunofluorescence, we have shown that GlcCer localization to the cell surface is significantly increased during growth in these conditions and during infection. We further seek to exploit this localization by treatment with Cerezyme (Cz), a recombinant enzyme that metabolizes GlcCer, as a potential treatment for Cn. Cz treatment was found to reduce the amount of GlcCer in vitro, in cultures, and in Cn cells inhabiting the mouse lung. Treatment with Cz induced a membrane integrity defect in wild type Cn cells similar to Δgcs1. Cz treatment also reduced the in vitro growth of Cn in a dose and condition dependent manner. Finally, Cz treatment was shown to have a protective effect on survival in mice infected with Cn. Taken together, these studies have established the legitimacy of targeting the GlcCer and other related sphingolipid systems in the development of novel therapeutics.  相似文献   

20.
In this study, we have analyzed the association of the Sec1p interacting protein Mso1p with the membrane fusion machinery in yeast. We show that Mso1p is essential for vesicle fusion during prospore membrane formation. Green fluorescent protein-tagged Mso1p localizes to the sites of exocytosis and at the site of prospore membrane formation. In vivo and in vitro experiments identified a short amino-terminal sequence in Mso1p that mediates its interaction with Sec1p and is needed for vesicle fusion. A point mutation, T47A, within the Sec1p-binding domain abolishes Mso1p functionality in vivo, and mso1T47A mutant cells display specific genetic interactions with sec1 mutants. Mso1p coimmunoprecipitates with Sec1p, Sso1/2p, Snc1/2p, Sec9p, and the exocyst complex subunit Sec15p. In sec4-8 and SEC4I133 mutant cells, association of Mso1p with Sso1/2p, Snc1/2p, and Sec9p is affected, whereas interaction with Sec1p persists. Furthermore, in SEC4I133 cells the dominant negative Sec4I133p coimmunoprecipitates with Mso1p-Sec1p complex. Finally, we identify Mso1p as a homologue of the PTB binding domain of the mammalian Sec1p binding Mint proteins. These results position Mso1p in the interface of the exocyst complex, Sec4p, and the SNARE machinery, and reveal a novel layer of molecular conservation in the exocytosis machinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号