首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A key attribute of invasive Streptococcus pyogenes is their ability to resist phagocytosis and multiply in human blood. M-related protein (Mrp) is a major anti-phagocytic factor but the mechanism whereby it helps streptococci to evade phagocytosis has not been demonstrated. We investigated phagocytosis resistance in a strain of serotype M4 by inactivating the mrp gene and also the emm, enn, sof and sfbX genes and by analysing the effect on streptococcal growth in blood and on complement deposition on the bacterial surface. Inactivation of enn4 and sfbX4 had little impact on growth in blood, but ablation of mrp4, emm4 or sof4 reduced streptococcal growth in human blood, confirming that Mrp and Emm are required for optimal resistance to phagocytosis and providing the first indication that Sof may be an anti-phagocytic factor. Moreover, antisera against Mrp4, Emm4 and Sof4 promoted the killing of S. pyogenes, but anti-SfbX serum had no effect. Growth of S. pyogenes in blood was dependent on the presence of fibrinogen and in the absence of fibrinogen there was a twofold increase in complement deposition. Inactivation of mrp4 resulted in a loss of fibrinogen-binding and caused a twofold increase in the binding of C3b that was inhibited by Mg-EGTA. Mrp contained two fibrinogen-binding sites, one of which is within a highly conserved region. These findings indicate that Mrp-fibrinogen interactions prevent surface deposition of complement via the classical pathway, thereby contributing to the ability of these streptococci to resist phagocytosis. This may be a common mechanism for evasion of phagocytosis because Mrp is expressed by approximately half of the clinical isolates of S. pyogenes.  相似文献   

2.
Staphylococcus aureus has been shown to interact specifically with fibrinogen. Three different extracellular fibrinogen-binding proteins, two of which have coagulase activity, are produced by S. aureus strain Newman. The role of these fibrinogen-binding proteins during staphylococcal colonization and infection has not yet been fully elucidated. Here we describe the cloning, sequencing and expression of a gene for a 19kDa fibrinogen-binding protein. This gene, called fib, encodes a 165-amino-acid polypeptide, including a 29-amino-acid signal sequence. The recombinant protein, which has an estimated molecular mass of 15.9kDa, bound fibrinogen and was recognized by a polyclonal antiserum against the native Fib protein. Homologies between the Fib protein and the fibrinogen-binding domain of coagulase suggest that amino acids within this domain are involved in the binding to fibrinogen.  相似文献   

3.
Serum opacity factor (SOF) is a large, extracellular, and cell-bound protein of group A streptococci that has two known functions, opacification of serum and binding of fibronectin. Herein, we describe a new function of SOF, the binding of fibrinogen. Utilizing purified, truncated recombinant SOF proteins, the fibrinogen-binding domain was localized to a region in the C-terminus of SOF encompassing amino acid residues 844–1047. Western-blot analysis revealed that SOF bound primarily to the β subunit of fibrinogen. A SOF-negative mutant bound 50% less fibrinogen than did its wild-type parent. Furthermore, fibrinogen blocked the binding of SOF to fibronectin. These data suggest that fibrinogen and fibronectin bind to the same domain within SOF. It remains to be determined whether the binding of fibrinogen to SOF contributes to the virulence of group A streptococci. Received: 13 June 2001 / Accepted: 20 July 2001  相似文献   

4.
Many strains of the important human pathogen Streptococcus pyogenes form aggregates when grown in vitro in liquid medium. The present studies demonstrate that this property is crucial for the adherence, the resistance to phagocytosis and the virulence of S. pyogenes. A conserved sequence of 19 amino acid residues (designated AHP) was identified in surface proteins of common S. pyogenes serotypes. This sequence was found to promote bacterial aggregation through homophilic protein-protein interactions between AHP-containing surface proteins of neighbouring bacteria. A synthetic AHP peptide inhibited S. pyogenes aggregation, reduced the survival of S. pyogenes in human blood and attenuated its virulence in mice. In contrast, mutant bacteria devoid of surface proteins containing AHP-related sequences did not aggregate or adhere to epithelial cells. These bacteria are also rapidly killed in human blood and show reduced virulence in mice, underlining the pathogenic significance of the AHP sequence and S. pyogenes aggregation.  相似文献   

5.
Binding of alpha 2-macroglobulin (alpha 2M) to streptococci and its effects on phagocytosis were investigated. Two types of streptococcal binding sites for alpha 2M were observed: Streptococcus pyogenes from human infections interacted only with native alpha 2M whereas S. dysgalactiae from bovine and S. equi from equine infections bound only a complex of alpha 2M with trypsin (alpha 2M-T). Preincubation of S. pyogenes with native alpha 2M substantially enhanced their phagocytosis by human polymorphonuclear neutrophils (PMN) whereas preincubation with alpha 2M-T was without any effect. On the other hand, incubation of S. dysgalactiae and S. equi with alpha 2M-T markedly reduced their phagocytosis by PMN from the respective host species. Native alpha 2M did not affect the phagocytosis of these streptococci. Digestion of the streptococcal binding sites for alpha 2M and alpha 2M-T pronase abolished the enhancement of phagocytosis of S. pyogenes by native alpha 2M as well as the inhibition of phagocytosis of S. dysgalactiae and S. equi by alpha 2M-T. Thus, binding of alpha 2M or its complexes appeared to play a role in streptococcal pathogenicity.  相似文献   

6.
Upon contact with human plasma, bacteria are rapidly recognized by the complement system that labels their surface for uptake and clearance by phagocytic cells. Staphylococcus aureus secretes the 16 kD Extracellular fibrinogen binding protein (Efb) that binds two different plasma proteins using separate domains: the Efb N-terminus binds to fibrinogen, while the C-terminus binds complement C3. In this study, we show that Efb blocks phagocytosis of S. aureus by human neutrophils. In vitro, we demonstrate that Efb blocks phagocytosis in plasma and in human whole blood. Using a mouse peritonitis model we show that Efb effectively blocks phagocytosis in vivo, either as a purified protein or when produced endogenously by S. aureus. Mutational analysis revealed that Efb requires both its fibrinogen and complement binding residues for phagocytic escape. Using confocal and transmission electron microscopy we show that Efb attracts fibrinogen to the surface of complement-labeled S. aureus generating a ‘capsule’-like shield. This thick layer of fibrinogen shields both surface-bound C3b and antibodies from recognition by phagocytic receptors. This information is critical for future vaccination attempts, since opsonizing antibodies may not function in the presence of Efb. Altogether we discover that Efb from S. aureus uniquely escapes phagocytosis by forming a bridge between a complement and coagulation protein.  相似文献   

7.
The interaction between the leukocyte integrin alpha(M)beta(2) (CD11b/CD18, Mac-1, CR3) and fibrinogen mediates the recruitment of phagocytes during the inflammatory response. Previous studies demonstrated that peptides P2 and P1, duplicating gamma 377-395 and gamma 190-202 sequences in the gamma C domain of fibrinogen, respectively, blocked the fibrinogen-binding function of alpha(M)beta(2), implicating these sequences as possible binding sites for alpha(M)beta(2). To determine the role of these sequences in integrin binding, recombinant wild-type and mutant gamma C domains were prepared, and their interactions with the alpha(M)I-domain, a ligand recognition domain within alpha(M)beta(2), were tested. Deletion of gamma 383-411 (P2-C) and gamma 377-411 produced gamma C mutants which were defective in binding to the alpha(M)I-domain. In contrast, alanine mutations of several residues in P1 did not affect alpha(M)I-domain binding, and simultaneous mutations in P1 and deletion of P2 did not decrease the binding function of gamma C further. Verifying the significance of P2, inserting P2-C and the entire P2 into the homologous position of the beta C-domain of fibrinogen imparted the higher alpha(M)I-domain binding ability to the chimeric proteins. To further define the molecular requirements for the P2-C activity, synthetic peptides derived from P2-C and a peptide array covering P2-C have been analyzed, and a minimal recognition motif was localized to gamma(390)NRLTIG(395). Confirming a critical role of this sequence, the cyclic peptide NRLTIG retained full activity inherent to P2-C, with Arg and Leu being important residues. Thus, these data demonstrate the essential role of the P2, but not P1, sequence for binding of gamma C by the alpha(M)I-domain and suggest that the adhesive function of P2 depends on the minimal recognition motif NRLTIG.  相似文献   

8.
The non-immune binding of immunoglobulins by bacteria is thought to contribute to the pathogenesis of infections. M-related proteins (Mrp) are group A streptococcal (GAS) receptors for immunoglobulins, but it is not known if this binding has any impact on virulence. To further investigate the binding of immunoglobulins to Mrp, we engineered mutants of an M type 4 strain of GAS by inactivating the genes for mrp, emm, enn, sof, and sfbX and tested these mutants in IgG-binding assays. Inactivation of mrp dramatically decreased the binding of human IgG, whereas inactivation of emm, enn, sof, and sfbx had only minor effects, indicating that Mrp is a major IgG-binding protein. Binding of human immunoglobulins to a purified, recombinant form of Mrp indicated that it selectively binds to the Fc domain of human IgG, but not IgA or IgM and that it preferentially bound subclasses IgG1>IgG4>IgG2>IgG3. Recombinant proteins encompassing different regions of Mrp were engineered and used to map its IgG-binding domain to its A-repeat region and a recombinant protein with 3 A-repeats was a better inhibitor of IgG binding than one with a single A-repeat. A GAS mutant expressing Mrp with an in-frame deletion of DNA encoding the A-repeats had a dramatically reduced ability to bind human IgG and to grow in human blood. Mrp exhibited host specificity in binding IgG; human IgG was the best inhibitor of the binding of IgG followed by pig, horse, monkey, and rabbit IgG. IgG from goat, mouse, rat, cow, donkey, chicken, and guinea pig were poor inhibitors of binding. These findings indicate that Mrp preferentially binds human IgG and that this binding contributes to the ability of GAS to resist phagocytosis and may be a factor in the restriction of GAS infections to the human host.  相似文献   

9.
Clumping factor of Staphylococcus aureus is a fibrinogen-binding protein that is located on the bacterial cell surface. The protein has an unusual repeat domain (region R) comprising mainly the dipeptide aspartate and serine. To determine if region R has a role in the surface display of the fibrinogen-binding region A domain, deletions lacking the region R encoding region of the clfA gene were generated. To determine the minimum length of region R required for wild-type levels of ClfA expression, variants with truncated region R domains were constructed. S. aureus cells expressing mutated clfA genes were tested for (i) proteins released by lysostaphin treatment that reacted with antisera specific for region A, (ii) clumping in soluble fibrinogen, (iii) adherence to immobilized fibrinogen and (iv) expression of the ClfA antigen on the cell surface by fluorescent activated cell sorting analysis. Each construct expressed three major immunoreactive proteins, two of which were putative N-terminal degradation products. Region R residues greater than 40 were required between region A and W (72 residues between region A and the LPDTG sorting signal) for wild-type levels of clumping in fibrinogen. A stepwise decrease in clumping titre was observed as the distance between region A and LPDTG was decreased from 72 to 4 residues. Similarly, a decrease in binding of anti-ClfA serum and in binding to fibrinogen-coated plastic surfaces was observed with cells expressing ClfA with 40 region R residues or less. Nevertheless, low levels of adherence to fibrinogen and binding to anti-ClfA serum occurred with ClfA derivatives that lacked region R altogether. This indicates that a small proportion of the ClfA molecules are linked to peptidoglycan very close to the cell surface but that residues greater than 72 are needed to allow sufficient ClfA molecules to span the entire cell wall and to display the biologically active A domain in a form that can participate fully in fibrinogen binding.  相似文献   

10.
Extracellular fibrinogen-binding protein (Efb) from Staphylococcus aureus inhibits platelet activation, although its mechanism of action has not been established. In this study, we discovered that the N-terminal region of Efb (Efb-N) promotes platelet binding of fibrinogen and that Efb-N binding to platelets proceeds via two independent mechanisms: fibrinogen-mediated and fibrinogen-independent. By proteomic analysis of Efb-interacting proteins within platelets and confirmation by pulldown assays followed by immunoblotting, we identified P-selectin and multimerin-1 as novel Efb interaction partners. The interaction of both P-selectin and multimerin-1 with Efb is independent of fibrinogen. We focused on Efb interaction with P-selectin. Excess of P-selectin extracellular domain significantly impaired Efb binding by activated platelets, suggesting that P-selectin is the main receptor for Efb on the surface of activated platelets. Efb-N interaction with P-selectin inhibited P-selectin binding to its physiological ligand, P-selectin glycoprotein ligand-1 (PSGL-1), both in cell lysates and in cell-free assays. Because of the importance of P-selectin-PSGL-1 binding in the interaction between platelets and leukocytes, we tested human whole blood and found that Efb abolishes the formation of platelet-monocyte and platelet-granulocyte complexes. In summary, we present evidence that in addition to its documented antithrombotic activity, Efb can play an immunoregulatory role via inhibition of P-selectin-PSGL-1-dependent formation of platelet-leukocyte complexes.  相似文献   

11.
Staphylococcus aureus is a major cause of nosocomial and community-acquired infection. It expresses several factors that promote avoidance of phagocytosis by polymorphonuclear leucocytes. Clumping factor A (ClfA) is a fibrinogen-binding surface protein of S. aureus that is an important virulence factor in several infection models. This study investigated whether ClfA is an antiphagocytic factor, and whether its antiphagocytic properties were based on its ability to bind fibrinogen. In S. aureus, ClfA was shown to be of equal importance to protein A, the antiphagocytic properties of which are well established. ClfA expressed in a surrogate Gram-positive host was also found to be antiphagocytic. A ClfA mutant that was unable to bind fibrinogen had a similar antiphagocytic effect to native ClfA in the absence of fibrinogen. ClfA inhibited phagocytosis in the absence of fibrinogen, and showed enhanced inhibition in the presence of fibrinogen.  相似文献   

12.
We report here the crystal structure of the minimal ligand-binding segment of the Staphylococcus aureus MSCRAMM, clumping factor A. This fibrinogen-binding segment contains two similarly folded domains. The fold observed is a new variant of the immunoglobulin motif that we have called DE-variant or the DEv-IgG fold. This subgroup includes the ligand-binding domain of the collagen-binding S.aureus MSCRAMM CNA, and many other structures previously classified as jelly rolls. Structure predictions suggest that the four fibrinogen-binding S.aureus MSCRAMMs identified so far would also contain the same DEv-IgG fold. A systematic docking search using the C-terminal region of the fibrinogen gamma-chain as a probe suggested that a hydrophobic pocket formed between the two DEv-IgG domains of the clumping factor as the ligand-binding site. Mutagenic substitution of residues Tyr256, Pro336, Tyr338 and Lys389 in the clumping factor, which are proposed to contact the terminal residues (408)AGDV(411) of the gamma-chain, resulted in proteins with no or markedly reduced affinity for fibrinogen.  相似文献   

13.
BBK32 is a fibronectin-binding protein from the Lyme disease-causing spirochete Borrelia burgdorferi. In this study, we show that BBK32 shares sequence similarity with fibronectin module-binding motifs previously identified in proteins from Streptococcus pyogenes and Staphylococcus aureus. Nuclear magnetic resonance spectroscopy and isothermal titration calorimetry are used to confirm the binding sites of BBK32 peptides within the N-terminal domain of fibronectin and to measure the affinities of the interactions. Comparison of chemical shift perturbations in fibronectin F1 modules on binding of peptides from BBK32, FnBPA from S. aureus, and SfbI from S. pyogenes provides further evidence for a shared mechanism of binding. Despite the different locations of the bacterial attachment sites in BBK32 compared with SfbI from S. pyogenes and FnBPA from S. aureus, an antiparallel orientation is observed for binding of the N-terminal domain of fibronectin to each of the pathogens. Thus, these phylogenetically and morphologically distinct bacterial pathogens have similar mechanisms for binding to human fibronectin.  相似文献   

14.
The surface-located fibrinogen-binding protein (clumping factor; ClfA) of Staphylococcus aureus has an unusual dipeptide repeat linking the ligand binding domain to the wall-anchored region. Southern blotting experiments revealed several other loci in the S. aureus Newman genome that hybridized to a probe comprising DNA encoding the dipeptide repeat. One of these loci is analysed here. It also encodes a fibrinogen-binding protein, which we have called ClfB. The overall organization of ClfB is very similar to that of ClfA, and the proteins have considerable sequence identity in the signal sequence and wall attachment domains. However, the A regions are only 26% identical. Recombinant biotinylated ClfB protein bound to fibrinogen in Western ligand blots. ClfB reacted with the α- and β-chains of fibrinogen in the ligand blots in contrast to ClfA, which binds exclusively to the γ-chain. Analysis of proteins released from the cell wall of S. aureus Newman by Western immunoblotting using antibody raised against the recombinant A region of ClfB identified a 124 kDa protein as the clfB gene product. This protein was detectable only on cells that were grown to the early exponential phase. It was absent from cells from late exponential phase or stationary phase cultures. Using a clfB mutant isolated by allelic replacement alone and in combination with a clfA mutation, the ClfB protein was shown to promote (i) clumping of exponential-phase cells in a solution of fibrinogen, (ii) adherence of exponential-phase bacteria to immobilized fibrinogen in vitro, and (iii) bacterial adherence to ex vivo human haemodialysis tubing, suggesting that it could contribute to the pathogenicity of biomaterial-related infections. However, in wild-type exponential-phase S. aureus Newman cultures, ClfB activity was masked by the ClfA protein, and it did not contribute at all to interactions of cells from stationary-phase cultures with fibrinogen. ClfB-dependent bacterial adherence to immobilized fibrinogen was inhibited by millimolar concentrations of Ca2+ and Mn2+, which indicates that, like ClfA, ligand binding by ClfB is regulated by a low-affinity inhibitory cation binding site.  相似文献   

15.
Strains of the Gram-positive human pathogen Streptococcus pyogenes (group A streptococcus) that express surface-associated M or M-like proteins survive and grow in non-immune fresh human blood. This is generally accepted to be caused by an antiphagocytic property of these proteins. However, in most previous studies, an inhibition of the internalization of the bacteria into host cells has not been studied or not directly demonstrated. Therefore, in the present paper, we used flow cytometry, fluorescence microscopy and electron microscopy to study phagocytosis by human neutrophils of wild-type S. pyogenes and strains deficient in expression of M protein and/or the M-like protein H. The results demonstrate that all strains of S. pyogenes tested, including the wild-type AP1 strain, induce actin polymerization and are efficiently phagocytosed by human neutrophils. In addition, using classical bactericidal assays, we show that the wild-type AP1 strain can survive inside neutrophils, whereas mutant strains are rapidly killed. We conclude that the ability of virulent S. pyogenes to survive and multiply in whole blood is most likely not possible to explain only by an antiphagocytic effect of bacterial surface components. Instead, our data suggest that bacterial evasion of host defences occurs intracellularly and that survival inside human neutrophils may contribute to the pathogenesis of S. pyogenes and the recurrence of S. pyogenes infections.  相似文献   

16.
Increased vascular permeability is a key feature of inflammatory conditions. In severe infections, leakage of plasma from the vasculature induces a life-threatening hypotension. Streptococcus pyogenes, a major human bacterial pathogen, causes a toxic shock syndrome (STSS) characterized by excessive plasma leakage and multi-organ failure. Here we find that M protein, released from the streptococcal surface, forms complexes with fibrinogen, which by binding to beta2 integrins of neutrophils, activate these cells. As a result, neutrophils release heparin binding protein, an inflammatory mediator inducing vascular leakage. In mice, injection of M protein or subcutaneous infection with S. pyogenes causes severe pulmonary damage characterized by leakage of plasma and blood cells. These lesions were prevented by treatment with a beta2 integrin antagonist. In addition, M protein/fibrinogen complexes were identified in tissue biopsies from a patient with necrotizing fasciitis and STSS, further underlining the pathogenic significance of such complexes in severe streptococcal infections.  相似文献   

17.
Integrin alphaXbeta2 (CD11c/CD18), which binds several ligands such as fibrinogen and iC3b, has important roles in leukocyte functions including phagocytosis and migration. Establishment of structure and functional relationship in alphaX I-domain, which is a ligand-binding moiety, is important in understanding leukocyte biology and integrin function. Previously we showed that two loops (alpha3-alpha4, betaD-alpha5) around a ligand-binding face of alphaX I-domain are important for the binding of the fibrinogen molecule. In this study, we took the further step of identifying critical residues in these loops and in a supportive loop (betaF-alpha7) for fibrinogen fragment E, the central domain of fibrinogen. The residues S(199) and Q(202) in the alpha3-alpha4 loop and K(243), Y(250) in the betaD-alpha5 loop are critical for the ligand. The residues K(242), D(249), K(251), and D(252) are important but less critical for fibrinogen fragment E. The involvement of the residues in the 3-dimensional model of the I-domain suggests that several amino acid sequences in fibrinogen fragment E are responsible for alphaX I-domain. Sequence comparisons with alphaM I-domain reveal that most of the critical residues shown in alphaX I-domain are also conserved in alphaM and may have important roles in fibrinogen central domain recognition in alphaM I-domain as well.  相似文献   

18.
Extracellular fibrinogen-binding protein (Efb) secreted by Staphylococcus aureus has previously been shown to contribute to pathogenesis in a rat wound infection model. Also antibodies against Efb exhibited a protective effect in a mouse mastitis model. The interaction between Efb and fibrinogen is divalent, with one binding site within the N-terminal repeat region in Efb and one at the C terminus. In this study we show that the distal D domain of fibrinogen contains at least one of the binding domains recognized by Efb. Efb stimulates fibrinogen binding to ADP-activated platelets. Furthermore, Efb inhibits ADP-induced, fibrinogen-dependent platelet aggregation in a concentration-dependent manner. This implies that Efb modifies platelet function by amplifying a non-functional interaction between fibrinogen and platelets. Efb recognizes the A alpha-chain of the D fragment of fibrinogen. The RGD sequence on the A alpha-chain is located close to the region recognized by Efb and contains a putative binding site for the platelet integrin GPIIb/IIIa receptor complex involved in platelet aggregation.  相似文献   

19.
Staphylococcus epidermidis is an important opportunistic pathogen and is a major cause of foreign body infections. We have characterized the ligand binding activity of SdrG, a fibrinogen-binding microbial surface component recognizing adhesive matrix molecules from S. epidermidis. Western ligand blot analysis showed that a recombinant form of the N-terminal A region of SdrG bound to the native Bbeta chain of fibrinogen (Fg) and to a recombinant form of the Bbeta chain expressed in Escherichia coli. By analyzing recombinant truncates and synthetic peptide mimetics of the Fg Bbeta chain, the binding site for SdrG was localized to residues 6-20 of this polypeptide. Recombinant SdrG bound to a synthetic 25-amino acid peptide (beta1-25) representing the N terminus of the Fg Bbeta chain with a KD of 1.4 x 10(-7) m as determined by fluorescence polarization experiments. This was similar to the apparent K(D) (0.9 x 10(-7) m) calculated from an enzyme-linked immunosorbent assay where SdrG bound immobilized Fg in a concentration-dependent manner. SdrG could recognize fibrinopeptide B (residues 1-14), but with a substantially lower affinity than that observed for SdrG binding to synthetic peptides beta1-25 and beta6-20. However, SdrG does not bind to thrombin-digested Fg. Thus, SdrG appears to target the thrombin cleavage site in the Fg Bbeta chain. In fact, SdrG was found to inhibit thrombin-induced fibrinogen clotting by interfering with fibrinopeptide B release.  相似文献   

20.
Protein F1 is a surface protein of Streptococcus pyogenes that mediates high affinity binding to fibronectin (Fn) and facilitates S. pyogenes adherence and penetration into cells. The smallest portion of F1 known to retain the full binding potential of the intact protein is a stretch of 49 amino acids known as the functional upstream domain (FUD). Synthetic and recombinant versions of FUD were labeled with fluorescein isothiocyanate and used in fluorescence anisotropy experiments. These probes bound to Fn or the 70-kDa fragment of Fn with dissociation constants of 8-30 nm. Removal of the N-terminal seven residues of FUD did not cause a change in binding affinity. Further N- or C-terminal truncations resulted in complete loss of binding activity. Analysis of recombinant versions of the 70-kDa fragment that lacked one or several type I modules indicates that residues 1-7 of the 49-mer bind to type I modules I1 and I2 of the 27-kDa subfragment and the C-terminal residues bind to modules I4 and I5. Fluorescein isothiocyanate-labeled 49-mer also bound with lower affinity to large Fn fragments that lack the five type I modules of the 27-kDa fragment but contain the other seven type 1 modules of Fn. These results indicate that, although FUD has a general affinity for type I modules, high affinity binding of FUD to Fn is mediated by specific interactions with N-terminal type I modules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号