首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
The genes coding for the binding-protein-dependent lactose transport system and beta-galactosidase in Agrobacterium radiobacter strain AR50 were cloned and partially sequenced. A novel lac operon was identified which contains genes coding for a lactose-binding protein (lacE), two integral membrane proteins (lacF and lacG), an ATP-binding protein (lacK) and beta-galactosidase (lacZ). The operon is transcribed in the order lacEFGZK. The operon is controlled by an upstream regulatory region containing putative -35 and -10 promoter sites, an operator site, a CRP-binding site probably mediating catabolite repression by glucose and galactose, and a regulatory gene (lacl) encoding a repressor protein which mediates induction by lactose and other galactosides in wild-type A. radiobacter (but not in strain AR50, thus allowing constitutive expression of the lac operon). The derived amino acid sequences of the gene products indicate marked similarities with other binding-protein-dependent transport systems in bacteria.  相似文献   

6.
7.
8.
The PIN (PilT N‐terminus) domain is a compact RNA‐binding protein domain present in all domains of life. This 120‐residue domain consists of a central and parallel β sheet surrounded by α helices, which together organize 4–5 acidic residues in an active site that binds one or more divalent metal ions and in many cases has endoribonuclease activity. In bacteria and archaea, the PIN domain is primarily associated with toxin–antitoxin loci, consisting of a toxin (the PIN domain nuclease) and an antitoxin that inhibits the function of the toxin under normal growth conditions. During nutritional or antibiotic stress, the antitoxin is proteolytically degraded causing activation of the PIN domain toxin leading to a dramatic reprogramming of cellular metabolism to cope with the new situation. In eukaryotes, PIN domains are commonly found as parts of larger proteins and are involved in a range of processes involving RNA cleavage, including ribosomal RNA biogenesis and nonsense‐mediated mRNA decay. In this review, we provide a comprehensive overview of the structural characteristics of the PIN domain and compare PIN domains from all domains of life in terms of structure, active site architecture, and activity.  相似文献   

9.
【背景】副溶血弧菌是一种重要的食源性病原菌,给公众健康带来严重危害。毒素-抗毒素系统广泛存在于细菌和古生菌基因组中,具有重要的生物学功能。【目的】在副溶血弧菌中鉴定新的毒素-抗毒素系统,为从毒素-抗毒素系统角度探讨该菌致病性和耐药性的分子机制奠定基础。【方法】通过在线工具预测副溶血弧菌染色体上的假定II型毒素-抗毒素系统;通过生长曲线分析和稀释点板实验检测假定毒素对大肠杆菌的毒性作用及相应抗毒素的抗毒性作用;通过反转录PCR确定毒素和抗毒素基因是否共转录;通过生物信息学分析确定新鉴定毒素-抗毒素系统的同源蛋白;通过LacZ报告实验确定抗毒素及毒素-抗毒素复合物对自身启动子的调控作用。【结果】副溶血弧菌染色体中编码6个假定II型毒素-抗毒素系统;基因vp1820的表达产物(VP1820)对大肠杆菌具有杀菌活性,vp1821的表达产物(VP1821)能中和VP1820的毒性;基因vp1821和vp1820共转录;vp1821-vp1820编码YefM-YoeB毒素-抗毒素系统;抗毒素YefM正调控启动子,YefM-YoeB复合物负调控启动子。【结论】在副溶血弧菌中鉴定了一个新的II型毒素-抗毒素系统,即YefM-YoeB,为进一步研究该系统对副溶血弧菌致病性和耐药性的影响奠定了基础。  相似文献   

10.
11.
12.
The chromosomal ntrPR operon of Sinorhizobium meliloti encodes a protein pair that forms a toxin-antitoxin (TA) module, the first characterized functional TA system in Rhizobiaceae. Similarly to other bacterial TA systems, the toxin gene ntrR is preceded by and partially overlaps with the antitoxin gene ntrP. Based on protein homologies, the ntrPR operon belongs to the vapBC family of TA systems. The operon is negatively autoregulated by the NtrPNtrR complex. Promoter binding by NtrP is weak; stable complex formation also requires the presence of NtrR. The N-terminal part of NtrP is responsible for the interaction with promoter DNA, whereas the C-terminal part is required for protein-protein interactions. In the promoter region, a direct repeat sequence was identified as the binding site of the NtrPNtrR complex. NtrR expression resulted in the inhibition of cell growth and colony formation; this effect was counteracted by the presence of the antitoxin NtrP. These results and our earlier observations demonstrating a less effective downregulation of a wide range of symbiotic and metabolic functions in the ntrR mutant under microoxic conditions and an increased symbiotic efficiency with the host plant alfalfa suggest that the ntrPR module contributes to adjusting metabolic levels under symbiosis and other stressful conditions.  相似文献   

13.
14.
15.
16.
We report the gene structure of a key signaling molecule from a marine sponge, Geodia cydonium. The selected gene, which codes for a classical protein kinase C (cPKC), comprises 13 exons and 12 introns; the introns are, in contrast to those found in cPKC from higher Metazoa, small in size ranging from 93 nt to 359 nt. The complete gene has a length of 4229 nt and contains exons which encode the characteristic putative regulatory and catalytic domains of metazoan cPKCs. While in the regulatory domain only one intron is in phase 0, in the catalytic domain most introns are phase 0 introns, suggesting that the latter only rarely undergo module duplication. The 5'-flanking sequence of the sponge cPKC gene contains a TATA-box like motif which is located 35-26 nt upstream from the start of the longest sequenced cDNA. This 5'-flanking sequence was analyzed for promoter activity. The longest fragment (538 nt) was able to drive the expression of luciferase in transient transfections of NIH 3T3 fibroblasts; the strong activity of the sponge promoter was found to be half the one displayed by the SV40 reference promoter. Deletion analysis demonstrates that the AP4 site and the GC box which is most adjacent to the TATA box are the crucial elements for maximal promoter activity. The activity of the promoter is not changed in 3T3 cells which are kept serum starved or in the presence of a phorbol ester. In conclusion, these data present the phylogenetically oldest cPKC gene which contains in the 5'-flanking region a promoter functional in the heterologous mammalian cell system.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号