首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 225 毫秒
1.
Simon JA  Lange CA 《Mutation research》2008,647(1-2):21-29
EZH2 is the catalytic subunit of Polycomb repressive complex 2 (PRC2), which is a highly conserved histone methyltransferase that targets lysine-27 of histone H3. This methylated H3-K27 chromatin mark is commonly associated with silencing of differentiation genes in organisms ranging from plants to flies to humans. Studies on human tumors show that EZH2 is frequently over-expressed in a wide variety of cancerous tissue types, including prostate and breast. Although the mechanistic contributions of EZH2 to cancer progression are not yet determined, functional links between EZH2-mediated histone methylation and DNA methylation suggest partnership with the gene silencing machinery implicated in tumor suppressor loss. Here we review the basic molecular biology of EZH2 and the findings that implicate EZH2 in different cancers. We also discuss EZH2 connections to other silencing enzymes, such as DNA methyltransferases and histone deacetylases, and we consider progress on deciphering mechanistic consequences of EZH2 overabundance and its potential roles in tumorigenesis. Finally, we review recent findings that link EZH2 roles in stem cells and cancer, and we consider prospects for integrating EZH2 blockade into strategies for developing epigenetic therapies.  相似文献   

2.
Enhancer of zeste homolog 2 (EZH2), the histone methyltransferase of the Polycomb Repressive complex 2 catalyzing histone H3 lysine 27 tri-methylation (H3K27me3), is frequently up-regulated in human cancers. In this study, we identified the tumor suppressor Deleted in liver cancer 1 (DLC1) as a target of repression by EZH2-mediated H3K27me3. DLC1 is a GTPase-activating protein for Rho family proteins. Inactivation of DLC1 results in hyper-activated Rho/ROCK signaling and is implicated in actin cytoskeleton reorganization to promote cancer metastasis. By chromatin immunoprecipitation assay, we demonstrated that H3K27me3 was significantly enriched at the DLC1 promoter region of a DLC1-nonexpressing HCC cell line, MHCC97L. Depletion of EZH2 in MHCC97L by shRNA reduced H3K27me3 level at DLC1 promoter and induced DLC1 gene re-expression. Conversely, transient overexpression of GFP-EZH2 in DLC1-expressing Huh7 cells reduced DLC1 mRNA level with a concomitant enrichment of EZH2 on DLC1 promoter. An inverse relation between EZH2 and DLC1 expression was observed in the liver, lung, breast, prostate, and ovarian cancer tissues. Treating cancer cells with the EZH2 small molecular inhibitor, 3-Deazaneplanocin A (DZNep), restored DLC1 expression in different cancer cell lines, indicating that EZH2-mediated H3K27me3 epigenetic regulation of DLC1 was a common mechanism in human cancers. Importantly, we found that DZNep treatment inhibited HCC cell migration through disrupting actin cytoskeleton network, suggesting the therapeutic potential of DZNep in targeting cancer metastasis. Taken together, our study has shed mechanistic insight into EZH2-H3K27me3 epigenetic repression of DLC1 and advocated the significant pro-metastatic role of EZH2 via repressing tumor and metastasis suppressors.  相似文献   

3.
4.
Global changes in the epigenome are increasingly being appreciated as key events in cancer progression. The pathogenic role of enhancer of zeste homolog 2 (EZH2) has been connected to its histone 3 lysine 27 (H3K27) methyltransferase activity and gene repression; however, little is known about relationship of changes in expression of EZH2 target genes to cancer characteristics and patient prognosis. Here we show that through expression analysis of genomic regions with H3K27 trimethylation (H3K27me3) and EZH2 binding, breast cancer patients can be stratified into good and poor prognostic groups independent of known cancer gene signatures. The EZH2-bound regions were downregulated in tumors characterized by aggressive behavior, high expression of cell cycle genes, and low expression of developmental and cell adhesion genes. Depletion of EZH2 in breast cancer cells significantly increased expression of the top altered genes, decreased proliferation, and improved cell adhesion, indicating a critical role played by EZH2 in determining the cancer phenotype.  相似文献   

5.
6.
The Polycomb group (PcG) protein, enhancer of zeste homologue 2 (EZH2), has an essential role in promoting histone H3 lysine 27 trimethylation (H3K27me3) and epigenetic gene silencing. This function of EZH2 is important for cell proliferation and inhibition of cell differentiation, and is implicated in cancer progression. Here, we demonstrate that under physiological conditions, cyclin-dependent kinase 1 (CDK1) and cyclin-dependent kinase 2 (CDK2) phosphorylate EZH2 at Thr 350 in an evolutionarily conserved motif. Phosphorylation of Thr 350 is important for recruitment of EZH2 and maintenance of H3K27me3 levels at EZH2-target loci. Blockage of Thr 350 phosphorylation not only diminishes the global effect of EZH2 on gene silencing, it also mitigates EZH2-mediated cell proliferation and migration. These results demonstrate that CDK-mediated phosphorylation is a key mechanism governing EZH2 function and that there is a link between the cell-cycle machinery and epigenetic gene silencing.  相似文献   

7.
8.
9.
10.
Overexpression of enhancer of zeste homologue 2 (EZH2) occurs in various malignancies and is associated with a poor prognosis, especially because of increased cancer cell proliferation. In this study we found an inverse correlation between EZH2 and RUNX3 gene expression in five cancer cell lines, i.e. gastric, breast, prostate, colon, and pancreatic cancer cell lines. Chromatin immunoprecipitation assay showed an association between EZH2 bound to the RUNX3 gene promoter, and trimethylated histone H3 at lysine 27, and HDAC1 (histone deacetylase 1) bound to the RUNX3 gene promoter in cancer cells. RNA interference-mediated knockdown of EZH2 resulted in a decrease in H3K27 trimethylation and unbound HDAC1 and an increase in expression of the RUNX3 gene. Restoration of RUNX3 expression was not associated with any change in DNA methylation status in the RUNX3 promoter region. RUNX3 was repressed by histone deacetylation and hypermethylation of a CpG island in the promoter region and restored by trichostatin A or/and 5-aza-2'-deoxycytidine. Immunofluorescence staining confirmed restoration of expression of the RUNX3 protein after knockdown of EZH2 and its restoration resulted in decreased cell proliferation. In vivo, an inverse relationship between expression of the EZH2 and RUNX3 proteins was observed at the individual cell level in gastric cancer patients in the absence of DNA methylation in the RUNX3 promoter region. The results showed that RUNX3 is a target for repression by EZH2 and indicated an underlying mechanism of the functional role of EZH2 overexpression on cancer cell proliferation.  相似文献   

11.
Histone modifications are increasingly being recognized as important epigenetic mechanisms that govern chromatin structure and gene expression. EZH2 is the catalytic subunit of the polycomb repressive complex 2 (PRC2), responsible for tri‐methylation of lysine 27 on histone 3 (H3K27me3) that leads to gene silencing. This highly conserved histone methyltransferase is found to be overexpressed in many different types of cancers including melanoma, where it is postulated to abnormally repress tumor suppressor genes. Somatic mutations have been identified in approximately 3% of melanomas, and activating mutations described within the catalytic SET domain of EZH2 confer its oncogenic activity. In the following review, we discuss the evidence that EZH2 is an important driver of melanoma progression and we summarize the progress of EZH2 inhibitors against this promising therapeutic target.  相似文献   

12.
13.
EZH2 is a key component of the polycomb PRC2 complex and functions as a histone H3 Lys27 (H3K27) trimethyltransferase. Here we show that EZH2 is down-regulated in human non-small cell lung cancer and low EZH2 expression predicts poor survival. Further we demonstrate that EZH2 inhibits lung cancer cell proliferation and colony formation in vitro and growth in vivo. We found that EZH2 binds to the promoter of Nrf2, where it increases H3K27me3 and represses Nrf2 expression. Finally, Nrf2 seems to be essential for the hyper proliferation of lung cancer cells in the absence of EZH2.  相似文献   

14.
《Genomics》2021,113(4):2276-2289
Background/AimThere has been increasing evidence for the function of long non-coding RNA (lncRNA) in nasopharyngeal carcinoma (NPC). We aim to delve into the position of lncRNA HOX antisense intergenic RNA (HOTAIR), together with enhancer of zeste homolog 2 (EZH2), E-cadherin and trimethylation of lysine 27 on histone H3 (H3K27me3) in NPC.MethodsHOTAIR, EZH2, and E-cadherin expression in NPC tissues and cells were tested. NPC cell biological functions were examined through gain-of and loss-of function assays. The mechanism of lncRNA HOTAIR/E-cadherin/EZH2/H3K27 axis in NPC was decoded.ResultsLncRNA HOTAIR and EZH2 were highly expressed in NPC, and E-cadherin was lowly expressed. Down-regulation of HOTAIR or EZH2 inhibited NPC cell progression and tumor growth. HOTAIR recruited histone methylase EZH2 to mediate trimethylation of H3K27 and regulated E-cadherin expression.ConclusionHOTAIR inhibits E-cadherin by stimulating the trimethylation of H3K27 to promote NPC cell progression through recruiting histone methylase EZH2.  相似文献   

15.
16.
17.
EZH2 (enhancer of zeste homologue 2) is the catalytic subunit of the polycomb repressive complex 2 (PRC2) that catalyzes the methylation of lysine 27 of histone H3 (H3K27). Dysregulation of EZH2 activity is associated with several human cancers and therefore EZH2 inhibition has emerged as a promising therapeutic target. Several small molecule EZH2 inhibitors with different chemotypes have been reported in the literature, many of which use a bicyclic heteroaryl core. Herein, we report the design and synthesis of EZH2 inhibitors containing an indoline core. Partial saturation of an indole to an indoline provided lead compounds with nanomolar activity against EZH2, while also improving solubility and oxidative metabolic stability.  相似文献   

18.
19.
20.
Hippo-like MST1 protein kinase regulates cell growth, organ size, and carcinogenesis. Reduction or loss of MST1 expression is implicated in poor cancer prognosis. However, the mechanism leading to MST1 silencing remains elusive. Here, we report that both MYC and EZH2 function as potent suppressors of MST1 expression in human prostate cancer cells. We demonstrated that concurrent overexpression of MYC and EZH2 correlated with the reduction or loss of MST1 expression, as shown by RT-qPCR and immunoblotting. Methylation sensitive PCR and bisulfite genomic DNA sequencing showed that DNA methylation caused MST1 silencing. Pharmacologic and RNAi experiments revealed that MYC and EZH2 silenced MST1 expression by inhibiting its promoter activity, and that EZH2 was a mediator of the MYC-induced silencing of MST1. In addition, MYC contributed to MST1 silencing by partly inhibiting the expression of microRNA-26a/b, a negative regulator of EZH2. As shown by ChIP assays, EZH2-induced DNA methylation and H3K27me3 modification, which was accompanied by a reduced H3K4me3 mark and RNA polymerase II occupancy on the MST1 promoter CpG region, were the underlying cause of MST1 silencing. Moreover, potent pharmacologic inhibitors of MYC or EZH2 suppressed prostate cancer cell growth in vitro, and the knockdown of MST1 caused cells’ resistance to MYC and EZH2 inhibitor-induced growth retardation. These findings indicate that MYC, in concert with EZH2, epigenetically attenuates MST1 expression and suggest that the loss of MST1/Hippo functions is critical for the MYC or EZH2 mediation of cancer cell survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号