首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adaptor protein p14 is associated with the cytoplasmic face of late endosomes that is involved in cell-surface receptor endocytosis and it also directly interacts with MP1, a scaffolding protein that binds the MAP kinase ERK1 and its upstream kinase activator MEK1. The interaction of p14 with MP1 recruits the latter to late endosomes and the endosomal localization of p14/MP1-MEK1-ERK1 scaffolding complex is required for signaling via ERK MAP kinase in an efficient and specific manner upon receptor stimulation. Here, we report the three-dimensional solution structure of the adaptor protein p14. The structure reveals a profilin-like fold with a central five-stranded beta-sheet sandwiched between alpha-helices. Unlike profilin, however, p14 exhibits weak interaction with selective phosphoinositides but no affinity towards proline-rich sequences. Structural comparison between profilin and p14 reveals the molecular basis for the differences in these functions. We further mapped the MP1 binding sites on p14 by NMR, and discuss the implications of these important findings on the possible function of p14.  相似文献   

2.
Eukaryotic cells use the extracellular signal regulated kinase (ERK) cascade to connect cell-surface receptors to intracellular targets. Although various signals are routed through the ERK pathway, cells respond accordingly to a given stimulus. To regulate proper signal transduction, scaffolds and adaptors are employed to organize specific signaling units. The scaffold protein MP1 (MEK1 partner) assembles a scaffold complex in the ERK cascade. We show that p14 functions as an adaptor protein, which is required and sufficient to localize MP1 to endosomes. Reduction of MP1 or p14 protein levels by siRNAi results in defective signal transduction. Therefore, our results suggest that the endosomal localization of the p14/MP1-MAPK scaffold complex is crucial for signal transduction.  相似文献   

3.
The regulation of endosome dynamics is crucial for fundamental cellular functions, such as nutrient intake/digestion, membrane protein cycling, cell migration and intracellular signalling. Here, we show that a novel lipid raft adaptor protein, p18, is involved in controlling endosome dynamics by anchoring the MEK1–ERK pathway to late endosomes. p18 is anchored to lipid rafts of late endosomes through its N‐terminal unique region. p18?/? mice are embryonic lethal and have severe defects in endosome/lysosome organization and membrane protein transport in the visceral endoderm. p18?/? cells exhibit apparent defects in endosome dynamics through perinuclear compartment, such as aberrant distribution and/or processing of lysosomes and impaired cycling of Rab11‐positive recycling endosomes. p18 specifically binds to the p14–MP1 complex, a scaffold for MEK1. Loss of p18 function excludes the p14–MP1 complex from late endosomes, resulting in a downregulation of the MEK–ERK activity. These results indicate that the lipid raft adaptor p18 is essential for anchoring the MEK–ERK pathway to late endosomes, and shed new light on a role of endosomal MEK–ERK pathway in controlling endosome dynamics.  相似文献   

4.
5.
The extracellular signal-regulated kinase (ERK) cascade regulates proliferation, differentiation, and survival in multicellular organisms. Scaffold proteins regulate intracellular signaling by providing critical spatial and temporal specificity. The scaffold protein MEK1 (mitogen-activated protein kinase and ERK kinase 1) partner (MP1) is localized to late endosomes by the adaptor protein p14. Using conditional gene disruption of p14 in mice, we now demonstrate that the p14-MP1-MEK1 signaling complex regulates late endosomal traffic and cellular proliferation. This function its essential for early embryogenesis and during tissue homeostasis, as revealed by epidermis-specific deletion of p14. These findings show that endosomal p14-MP1-MEK1 signaling has a specific and essential function in vivo and, therefore, indicate that regulation of late endosomal traffic by extracellular signals is required to maintain tissue homeostasis.  相似文献   

6.
The p14/MP1 scaffold complex binds MEK1 and ERK1/2 on late endosomes, thus regulating the strength, duration and intracellular location of MAPK signaling. By organelle proteomics we have compared the protein composition of endosomes purified from genetically modified p14?/?, p14+/? and p14(rev) mouse embryonic fibroblasts. The latter ones were reconstituted retrovirally from p14?/? mouse embryonic fibroblasts by reexpression of pEGFP-p14 at equimolar ratios with its physiological binding partner MP1, as shown here by absolute quantification of MP1 and p14 proteins on endosomes by quantitative MS using the Equimolarity through Equalizer Peptide strategy. A combination of subcellular fractionation, 2-D DIGE and MALDI-TOF/TOF MS revealed 31 proteins differentially regulated in p14?/? organelles, which were rescued by reexpression of pEGFP-p14 in p14?/? endosomes. Regulated proteins are known to be involved in actin remodeling, endosomal signal transduction and trafficking. Identified proteins and their in silico interaction networks suggested that endosomal signaling might regulate such major cellular functions such as proliferation, differentiation, migration and survival.  相似文献   

7.
Scaffold proteins of the mitogen-activated protein kinase (MAPK) pathway have been proposed to form an active signaling module and enhance the specificity of the transduced signal. Here, we report a 2-A resolution structure of the MAPK scaffold protein MP1 in a complex with its partner protein, p14, that localizes the complex to late endosomes. The structures of these two proteins are remarkably similar, with a five-stranded beta-sheet flanked on either side by a total of three helices. The proteins form a heterodimer in solution and interact mainly through the edge beta-strand in each protein to generate a 10-stranded beta-sheet core. Both proteins also share structural similarity with the amino-terminal regulatory domains of the membrane trafficking proteins, sec22b and Ykt6p, as well as with sedlin (a component of a Golgi-associated membrane-trafficking complex) and the sigma2 and amino-terminal portion of the mu2 subunits of the clathrin adaptor complex AP2. Because neither MP1 nor p14 have been implicated in membrane traffic, we propose that the similar protein folds allow these relatively small proteins to be involved in multiple and simultaneous protein-protein interactions. Mapping of highly conserved, surface-exposed residues on MP1 and p14 provided insight into the potential sites of binding of the signaling kinases MEK1 and ERK1 to this complex, as well as the areas potentially involved in other protein-protein interactions.  相似文献   

8.
We have identified a novel, highly conserved protein of 14 kD copurifying with late endosomes/lysosomes on density gradients. The protein, now termed p14, is peripherally associated with the cytoplasmic face of late endosomes/lysosomes in a variety of different cell types.In a two-hybrid screen with p14 as a bait, we identified the mitogen-activated protein kinase (MAPK) scaffolding protein MAPK/extracellular signal-regulated kinase (ERK) kinase (MEK) partner 1 (MP1) as an interacting protein. We confirmed the specificity of this interaction in vitro by glutathione S-transferase pull-down assays and by coimmunoprecipitation, cosedimentation on glycerol gradients, and colocalization. Moreover, expression of a plasma membrane-targeted p14 causes mislocalization of coexpressed MP1. In addition, we could reconstitute protein complexes containing the p14-MP1 complex associated with ERK and MEK in vitro.The interaction between p14 and MP1 suggests a MAPK scaffolding activity localized to the cytoplasmic surface of late endosomes/lysosomes, thereby combining catalytic scaffolding and subcellular compartmentalization as means to modulate MAPK signaling within a cell.  相似文献   

9.
The cyclin-dependent kinase inhibitor p27Kip1 plays an important role in cell cycle regulation. The cyclin-dependent kinase-inhibitory activity of p27Kip1 is regulated by changes in its concentration and its subcellular localization. Several reports suggest that phosphorylation of p27Kip1 at serine 10, threonine 157, and threonine 187 regulate its localization. We have previously identified that carboxyl-terminal threonine 198 (Thr198) in p27Kip1 is a novel phosphorylation site and that Akt is associated with the phosphorylation at the site (Fujita, N., Sato, S., Katayama, K., and Tsuruo, T. (2002) J. Biol. Chem. 277, 28706-28713). We show herein that activation of the Ras/Raf/mitogen-activated protein kinase kinase (MAPK kinase/MEK) pathway also regulates phosphorylation of p27Kip1 at Thr198. MAPKs were not directly associated with p27Kip1 phosphorylation at Thr198, but the p90 ribosomal protein S6 kinases (RSKs) could bind to and directly phosphorylate p27Kip1 at Thr198 in a Ras/Raf/MEK-dependent manner. RSK-dependent phosphorylation promoted the p27Kip1 binding to 14-3-3 and its cytoplasmic localization. To prove the direct relationship between 14-3-3 binding and cytoplasmic localization, we constructed a p27Kip1-R18 fusion protein in which the R18 peptide was fused to the carboxyl-terminal region of p27Kip1. The R18 peptide is known to interact with 14-3-3 independent of phosphorylation. The p27Kip1-R18 distributed mainly in the cytosol, whereas mutant p27Kip1-R18 (p27Kip1-R18-K2) that had no 14-3-3 binding capability existed mainly in the nucleus. These results indicate that RSKs play a crucial role in cell cycle progression through translocation of p27Kip1, in addition to Akt, to the cytoplasm in a phosphorylation and 14-3-3 binding-dependent manner.  相似文献   

10.
The structural organization and topology of the Lcb1p subunit of yeast and mammalian serine palmitoyltransferases (SPT) were investigated. In the yeast protein, three membrane-spanning domains were identified by insertion of glycosylation and factor Xa cleavage sites at various positions. The first domain of the yeast protein, located between residues 50 and 84, was not required for the stability, membrane association, interaction with Lcb2p, or enzymatic activity. Deletion of the comparable domain of the mammalian protein SPTLC1 also had little effect on its function, demonstrating that this region is not required for membrane localization or heterodimerization with SPTLC2. The second and third membrane-spanning domains of yeast Lcb1p, located between residues 342 and 371 and residues 425 and 457, respectively, create a luminal loop of approximately 60 residues. In contrast to the first membrane-spanning domain, the second and third membrane-spanning domains were both required for Lcb1p stability. In addition, mutations in the luminal loop destabilized the SPT heterodimer indicating that this region of the protein is important for SPT structure and function. Mutations in the extreme carboxyl-terminal region of Lcb1p also disrupted heterodimer formation. Taken together, these data suggest that in contrast to other members of the alpha-oxoamine synthases that are soluble homodimers, the Lcb1p and Lcb2p subunits of the SPT heterodimer may interact in the cytosol, as well as within the membrane and/or the lumen of the endoplasmic reticulum.  相似文献   

11.
12.
13.
14.
15.
The interaction of the adaptor protein p11, also denoted S100A10, with the C-terminus of the two-pore-domain K+ channel TASK-1 was studied using yeast two-hybrid analysis, glutathione S-transferase pull-down, and co-immunoprecipitation. We found that p11 interacts with a 40 amino-acid region in the proximal C-terminus of the channel. In heterologous expression systems, deletion of the p11-interacting domain enhanced surface expression of TASK-1. Attachment of the p11-interacting domain to the cytosolic tail of the reporter protein CD8 caused retention/retrieval of the construct in the endoplasmic reticulum (ER). Attachment of the last 36 amino acids of p11 to CD8 also caused ER localization, which was abolished by removal or mutation of a putative retention motif (H/K)xKxxx, at the C-terminal end of p11. Imaging of EGFP-tagged TASK-1 channels in COS cells suggested that wild-type TASK-1 was largely retained in the ER. Knockdown of p11 with siRNA enhanced trafficking of TASK-1 to the surface membrane. Our results suggest that binding of p11 to TASK-1 retards the surface expression of the channel, most likely by virtue of a di-lysine retention signal at the C-terminus of p11. Thus, the cytosolic protein p11 may represent a 'retention factor' that causes localization of the channel to the ER.  相似文献   

16.
The Phox and Bem1p (PB1) domain constitutes a recently recognized protein-protein interaction domain found in the atypical protein kinase C (aPKC) isoenzymes, lambda/iota- and zeta PKC; members of mitogen-activated protein kinase (MAPK) modules like MEK5, MEKK2, and MEKK3; and in several scaffold proteins involved in cellular signaling. Among the last group, p62 and Par6 (partitioning-defective 6) are involved in coupling the aPKCs to signaling pathways involved in cell survival, growth control, and cell polarity. By mutation analyses and molecular modeling, we have identified critical residues at the interaction surfaces of the PB1 domains of aPKCs and p62. A basic charge cluster interacts with an acidic loop and helix both in p62 oligomerization and in the aPKC-p62 interaction. Subsequently, we determined the abilities of mammalian PB1 domain proteins to form heteromeric and homomeric complexes mediated by this domain. We report several novel interactions within this family. An interaction between the cell polarity scaffold protein Par6 and MEK5 was found. Furthermore, p62 interacts both with MEK5 and NBR1 in addition to the aPKCs. Evidence for involvement of p62 in MEK5-ERK5 signaling is presented.  相似文献   

17.
LAMTOR3 (MP1) and LAMTOR2 (p14) form a heterodimer as part of the larger Ragulator complex that is required for MAPK and mTOR1 signaling from late endosomes/lysosomes. Here, we show that loss of LAMTOR2 (p14) results in an unstable cytosolic monomeric pool of LAMTOR3 (MP1). Monomeric cytoplasmic LAMTOR3 is rapidly degraded in a proteasome-dependent but lysosome-independent manner. Mutational analyses indicated that the turnover of the protein is dependent on ubiquitination of several lysine residues. Similarly, other Ragulator subunits, LAMTOR1 (p18), LAMTOR4 (c7orf59), and LAMTOR5 (HBXIP), are degraded as well upon the loss of LAMTOR2. Thus the assembly of the Ragulator complex is monitored by cellular quality control systems, most likely to prevent aberrant signaling at the convergence of mTOR and MAPK caused by a defective Ragulator complex.  相似文献   

18.
TAR DNA-binding protein-43 (TDP-43) proteinopathy has been linked to several neurodegenerative diseases, such as frontotemporal lobar degeneration with ubiquitin-positive inclusions and amyotrophic lateral sclerosis. Phosphorylated and ubiquitinated TDP-43 C-terminal fragments have been found in cytoplasmic inclusions in frontotemporal lobar degeneration with ubiquitin-positive inclusions and amyotrophic lateral sclerosis patients. However, the factors and pathways that regulate TDP-43 aggregation are still not clear. We found that the C-terminal 15 kDa fragment of TDP-43 is sufficient to induce aggregation but the aggregation phenotype is modified by additional sequences. Aggregation is accompanied by phosphorylation at serine residues 409/410. Mutation of 409/410 to phosphomimetic aspartic acid residues significantly reduces aggregation. Inhibition of either proteasome or autophagy dramatically increases TDP-43 aggregation. Furthermore, TDP-43 aggregates colocalize with markers of autophagy and the adaptor protein p62/SQSTM1. Over-expression of p62/SQSTM1 reduces TDP-43 aggregation in an autophagy and proteasome-dependent manner. These studies suggest that aggregation of TDP-43 C-terminal fragments is regulated by phosphorylation events and both the autophagy and proteasome-mediated degradation pathways.  相似文献   

19.
Cdk5 and p35 are integral components of the sperm tail outer dense fibers (ODFs), which contribute to the distinct morphology and function of the sperm tail. In this study, we sought to characterize and investigate the significance of Cdk5/p35 association with ODFs. We show that ODF2 interacts with Cdk5 and p35 but not with the Cdk5/p35 heterodimer. By using deletion mutants, the ODF2 binding region in p35 was mapped to residues 122 to 198. This overlaps the Cdk5 binding region in p35, explaining the inability of ODF2 to bind to the Cdk5/p35 complex. In vitro phosphorylation assay showed that although Cdk5/p35 does not phosphorylate ODF2, it phosphorylates ODF1. Mass spectrometry revealed that Cdk5/p35 specifically phosphorylates Ser193 in the ODF1 C-terminal region containing the Cys-X-Pro motif, the interaction site for the novel RING finger protein, ODF1 interacting protein (OIP1), a candidate E3 ubiquitin ligase, that also localizes in the sperm tail. Cdk5 phosphorylation of ODF1 Ser193 results in enhanced ODF1-OIP1 interaction. These findings suggest that Cdk5 may be important in promoting ODF1 degradation, and potentially, the detachment and fragmentation of the sperm tail following fertilization.  相似文献   

20.
The NADPH oxidase of phagocytic cells is regulated by the cytosolic factors p47(phox), p67(phox), and p40(phox) as well as by the Rac1-Rho-GDI heterodimer. The regulation is a consequence of protein-protein interactions involving a variety of protein domains that are well characterized in signal transduction. We have studied the behavior of the NADPH oxidase cytosolic factors in solution using small angle neutron scattering and gel filtration. p47(phox), two truncated forms of p47(phox), namely, p47(phox) without its C-terminal end (residues 1-358) and p47(phox) without its N-terminal end (residues 147-390), and p40(phox) were found to be monomeric in solution. The dimeric form of p67(phox) previously observed by gel filtration experiments was confirmed. Our small angle neutron scattering experiments show that p40(phox) binds to the full-length p47(phox) in solution in the absence of phosphorylation. We demonstrated that the C-terminal end of p47(phox) is essential in this interaction. From the comparison of the presence or absence of interaction with various truncated forms of the proteins, we confirmed that the SH3 domain of p40(phox) interacts with the C-terminal proline rich region of p47(phox). The radii of gyration observed for p47(phox) and the truncated forms of p47(phox) (without the C-terminal end or without the N-terminal end) show that all these molecules are elongated and that the N-terminal end of p47(phox) is globular. These results suggest that the role of amphiphiles such as SDS or arachidonic acid or of p47(phox) phosphorylation in the elicitation of NADPH oxidase activation could be to disrupt the p40(phox)-p47(phox) complex rather than to break an intramolecular interaction in p47(phox).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号