首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactive oxygen species (ROS) may serve as signals coupling metabolism to other cell functions. In addition to being by-products of normal metabolism, they are generated at elevated levels under environmental stress situations. We analyzed how reactive oxygen species affect the circadian clock in the model organism Neurospora crassa. In light/dark cycles, an increase in the levels of reactive oxygen species advanced the phase of both the conidiation rhythm and the expression of the clock gene frequency. Our results indicate a dominant role of the superoxide anion in the control of the phase. Elevation of superoxide production resulted in the activation of protein phosphatase 2A, a regulator of the positive element of the circadian clock. Our data indicate that even under nonstress conditions, reactive oxygen species affect circadian timekeeping. Reduction of their basal levels results in a delay of the phase in light/dark cycles and a longer period under constant conditions. We show that under entrained conditions the phase depends on the temperature and reactive oxygen species contribute to this effect. Our results suggest that the superoxide anion is an important factor controlling the circadian oscillator and is able to reset the clock most probably by activating protein phosphatase 2A, thereby modulating the activity of the White Collar complex.  相似文献   

2.
Oxidative stress plays an important role in the induction of T lymphocyte hyporesponsiveness observed in several human pathologies including cancer, rheumatoid arthritis, leprosy, and AIDS. To investigate the molecular basis of oxidative stress-induced T cell hyporesponsiveness, we have developed an in vitro system in which T lymphocytes are rendered hyporesponsive by co-culture with oxygen radical-producing activated neutrophils. We have observed a direct correlation between the level of T cell hyporesponsiveness induced and the concentration of reactive oxygen species produced. Moreover, induction of T cell hyporesponsiveness is blocked by addition of N-acetyl cysteine, Mn(III)tetrakis(4-benzoic acid)porphyrin chloride, and catalase, confirming the critical role of oxidative stress in this system. The pattern of tyrosine-phosphorylated proteins was profoundly altered in hyporesponsive as compared with normal T cells. In hyporesponsive T cells, T cell receptor (TCR) ligation no longer induced phospholipase C-gamma1 activation and caused reduced Ca(2+) flux. In contrast, despite increased levels of ERK1/2 phosphorylation, TCR-dependent activation of mitogen-activated protein kinase ERK1/2 was unaltered in hyporesponsive T lymphocytes. A late TCR-signaling event such as caspase 3 activation was as well unaffected in hyporesponsive T lymphocytes. Our data indicate that TCR-signaling pathways are differentially affected by physiological levels of oxidative stress and would suggest that although "hyporesponsive" T cells have lost certain effector functions, they may have maintained or gained others.  相似文献   

3.
The glutamine synthetase and the NADP-specific glutamate dehydrogenase activities of Neurospora crassa were lost in a culture without carbon source only when in the presence of air. Glutamine synthetase was previously reported to be liable to in vitro and in vivo inactivation by activated oxygen species. Here we report that NADP-specific glutamate dehydrogenase was remarkably stable in the presence of activated oxygen species but was rendered susceptible to oxidative inactivation when chelated iron was bound to the enzyme and either ascorbate or H2O2 reacted on the bound iron. This reaction gave rise to further modifications of the enzyme monomers by activated oxygen species, to partial dissociation of the oligomeric structure, and to precipitation and fragmentation of the enzyme. The in vitro oxidation reaction was affected by pH, temperature, and binding to the enzyme of NADPH. Heterogeneity in total charge was observed in the purified and immunoprecipitated enzymes, and the relative amounts of enzyme monomers with different isoelectric points changes with time of the oxidizing reaction.  相似文献   

4.
5.
The morphogenetic transitions of the N. crassa asexual life cycle are responses to a hyperoxidant state in which probably singlet oxygen is generated. Induction of catalase activity and catalase oxidation by singlet oxygen are consequences of this recurrent hyperoxidant state. Here the biochemical properties and regulation of two large monofunctional catalases are reviewed, and a new catalase-peroxidase gene and activity is described. Catalase-3 is associated to growing and Catalase-1 to non-growing cells. Under stressful conditions one of these catalases is synthesized, depending on whether growth can be continued or a resistant cell has to be made. The catalase-peroxidase Catalase-2 was possibly derived from a bacterial enzyme. In contrast to the other catalases, Catalase-2 had catalase and peroxidase activity. Catalase-2 was expressed under conditions in which vacuolization of hyphae is observed. All three enzymes have a chlorin in its active site instead of ferroprotoheme IX and are resistant to molar concentrations of hydrogen peroxide. These and all other catalases tested so far are oxidized by singlet oxygen, probably at the heme moiety. The catalase activity is virtually unaffected by oxidation, but the enzymes are probably degraded more rapidly than the unmodified ones.  相似文献   

6.
《Free radical research》2013,47(5):479-496
Abstract

Elevated rates of reactive oxygen species (ROS) have been detected in almost all cancers, where they promote many aspects of tumour development and progression. However, tumour cells also express increased levels of antioxidant proteins to detoxify from ROS, suggesting that a delicate balance of intracellular ROS levels is required for cancer cell function. Further, the radical generated, the location of its generation, as well as the local concentration is important for the cellular functions of ROS in cancer. A challenge for novel therapeutic strategies will be the fine tuning of intracellular ROS signalling to effectively deprive cells from ROS-induced tumour promoting events, towards tipping the balance to ROS-induced apoptotic signalling. Alternatively, therapeutic antioxidants may prevent early events in tumour development, where ROS are important. However, to effectively target cancer cells specific ROS-sensing signalling pathways that mediate the diverse stress-regulated cellular functions need to be identified. This review discusses the generation of ROS within tumour cells, their detoxification, their cellular effects, as well as the major signalling cascades they utilize, but also provides an outlook on their modulation in therapeutics.  相似文献   

7.
8.
Characterization of a double mutant, his-6: hgu-4, which is unable to utilize L-histidyl-glycine as a source of histidine has revealed a new locus on linkage group V. The hgu-4 genotype results in a generalized reduced transport activity for amino acids, with a concomitant increased resistance to amino acid analogs. Transport rates and analog resistance for amino acids by this mutant are compared to the previously reported transport deficient mutants fpr-1, nap and un-3. Transport of L-aspartate as a function of temperature is examined in a variety of transport deficient strains in an attempt to explain the mode of action of mutation which pleiotropically affect several genetically and biochemically distinct amino acid transport systems.  相似文献   

9.
Plants and animals use day or night length for seasonal control of reproduction and other biological functions. Overwhelming evidence suggests that this photoperiodic mechanism relies on a functional circadian system. Recent progress has defined how flowering time in plants is regulated by photoperiodic control of output pathways, but the underlying mechanisms of photoperiodism remain to be described. The authors investigate photoperiodism in a genetic model system for circadian rhythms research, Neurospora crassa. They find that both propagation and reproduction respond systematically to photoperiod. Furthermore, a nonreproductive light-regulated function is also enhanced under certain photoperiodic conditions. All of these photoperiodic responses require a functional circadian clock, in that they are absent in a clock mutant. Night break experiments show that measuring night length is one of the mechanisms used for photoperiod assessment. This represents the first formal report of photoperiodism in the fungi.  相似文献   

10.
11.
Summary Conidiation in Neurospora crassa has been studied in vivo by time-lapse microphotography and shown to be most generally (in aerial, dry conditions) a budding-fission process. Such a two-phase process is characterized by an initial basifugal budding of proconidial elements which are then secondarily separated as maturing conidia by interconidial septa. Dry macroconidia of Neurospora are thus blasto-arthrospores, i.e. blastospores basifugally budded on conidiophores and secondarily disarticulated from the proconidial chain as arthrosporal elements. Inception and median splitting of the interconidial septum have been electron microphotographed.In the vegetative hyphae, ethanol dehydrogenase has been cytochemically detected by oxidative assay and demonstrates a dense, uniform distribution of activity except at the hyphal tips. In the conidiating hyphae, the ethanol dehydro-genase becomes less dense in distribution, especially in the budding apices. Cytochrome oxidase activity, localized in the mitochondria, is confined in the subapical zone of vegetative hyphae while at the initiation of conidiation it becomes dispersed throughout the proconidial buds.  相似文献   

12.
Based on the “free radical theory” of disease, researchers have been trying to elucidate the role of oxidative stress from free radicals in cardiovascular disease. Considerable data indicate that reactive oxygen species and oxidative stress are important features of cardiovascular diseases including atherosclerosis, hypertension, and congestive heart failure. However, blanket strategies with antioxidants to ameliorate cardiovascular disease have not generally yielded favorable results. However, our understanding of reactive oxygen species has evolved to the point at which we now realize these species have important roles in physiology as well as pathophysiology. Thus, it is overly simplistic to assume a general antioxidant strategy will yield specific effects on cardiovascular disease. Indeed, there are several sources of reactive oxygen species that are known to be active in the cardiovascular system. This review addresses our understanding of reactive oxygen species sources in cardiovascular disease and both animal and human data defining how reactive oxygen species contribute to physiology and pathology.  相似文献   

13.
Reactive oxygen species in cell signaling   总被引:1,自引:0,他引:1  
Reactive oxygen species (ROS) are generated as by-products of cellular metabolism, primarily in the mitochondria. When cellular production of ROS overwhelms its antioxidant capacity, damage to cellular macromolecules such as lipids, protein, and DNA may ensue. Such a state of "oxidative stress" is thought to contribute to the pathogenesis of a number of human diseases including those of the lung. Recent studies have also implicated ROS that are generated by specialized plasma membrane oxidases in normal physiological signaling by growth factors and cytokines. In this review, we examine the evidence for ligand-induced generation of ROS, its cellular sources, and the signaling pathways that are activated. Emerging concepts on the mechanisms of signal transduction by ROS that involve alterations in cellular redox state and oxidative modifications of proteins are also discussed.  相似文献   

14.
15.
16.
Reactive oxygen species and cellular oxygen sensing   总被引:1,自引:0,他引:1  
  相似文献   

17.
Reactive oxygen species in phagocytic leukocytes   总被引:2,自引:2,他引:0  
Phagocytic leukocytes consume oxygen and generate reactive oxygen species in response to appropriate stimuli. The phagocyte NADPH oxidase, a multiprotein complex, existing in the dissociated state in resting cells becomes assembled into the functional oxidase complex upon stimulation and then generates superoxide anions. Biochemical aspects of the NADPH oxidase are briefly discussed in this review; however, the major focus relates to the contributions of various modes of microscopy to our understanding of the NADPH oxidase and the cell biology of phagocytic leukocytes.  相似文献   

18.
The effects of hydrogen peroxide (H2O2), nitric oxide (NO), and a combination of both on the metabolism of cell wall polysaccharides were studied in tobacco (Nicotiana tabacum L.) cv Bright Yellow 2 (BY-2) suspension cultured cells in the presence of D-[U-14C]glucose or D-[U-14C]galactose as radioactive tracers. We found that the radiolabelling of newly synthesised total cell wall polysaccharides (pectins, hemicelluloses and alpha-cellulose), buffer-soluble polysaccharides, and membrane-associated polysaccharides decreased under the influence of exogenous systems generating H2O2 and NO. However, when the total amount of newly synthesised cell wall polysaccharides was calculated as a percentage of the total cellular radioactivity (ethanol-soluble pool plus the homogenate of ethanol-insoluble material), all treatments showed negligible effects in the presence of D-[U-14C]glucose or D-[U-14C]galactose as tracers. This occurred because the treatments generating H2O2, NO and H2O2 plus NO caused a marked decrease in the concentration of the ethanol-soluble pool as well as in the total radioactivity found in the homogenate of the ethanol-insoluble material. Most of the radioactivity taken up by the cells was evolved as 14CO2 during the respiratory processes. A qualitative and quantitative characterisation of the ethanol-soluble pool showed that radioactive UDP-sugars in BY-2 suspension cultured cells were differentially reduced by all treatments. Therefore, the decrease of the newly synthesised cell wall polysaccharides seems to be strictly dependent on the reduction of the UDP-sugars pool.  相似文献   

19.
活性氧是细胞癌变过程中的重要角色:它本身能使DNA损伤,同时又促使致癌物质的产生并且许多致癌因子都是先诱导产生活性氧,然后通过活性氧起致癌作用的,但是另一方面,活性氧却有杀伤癌细胞和诱导细胞凋亡的能力许多抗癌药正是利用活性氧这一特点起作用的。  相似文献   

20.
The aim of this study was to investigate the influence of reactive oxygen species (ROS) on the activity of complex I and on the cardiolipin content in bovine heart submitochondrial particles (SMP). ROS were generated through the use of xanthine/xanthine oxidase (X/XO) system. Treatment of SMP with X/XO resulted in a large production of superoxide anion, detected by acetylated cytochrome c method, which was blocked by superoxide dismutase (SOD). Exposure of SMP to ROS generation resulted in a marked loss of complex I activity and to parallel loss of mitochondrial cardiolipin content. Both these effects were completely abolished by SOD+catalase. Exogenous added cardiolipin was able to almost completely restore the ROS-induced loss of complex I activity. No restoration was obtained with other major phospholipid components of the mitochondrial membrane such as phosphatidylcholine and phosphatidylethanolamine, nor with peroxidized cardiolipin. These results demonstrate that ROS affect the mitochondrial complex I activity via oxidative damage of cardiolipin which is required for the functioning of this multisubunit enzyme complex. These results may prove useful in probing molecular mechanisms of ROS-induced peroxidative damage to mitochondria, which have been proposed to contribute to those pathophysiological conditions characterized by an increase in the basal production of reactive oxygen species such as aging, ischemia/reperfusion and chronic degenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号