首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SET domains are protein lysine methyltransferases that methylate diverse proteins, such as, histones, Rubisco and cytochrome C. In particular, they play an important role in the dynamics of the eukaryotic chromatin and are present in several chromatin-associated proteins. Recently, structures of several SET domains have been solved, and they contain a conserved fold that is unrelated to previously characterized methyltransferases, which possess either Rossmann fold or SPOUT domains. Phylogenetic and phyletic-profile analysis of the SET domain suggests that it was an evolutionary “invention” of the eukaryotic lineage, with secondary lateral transfers to bacteria. We show that the conserved N- and C- terminal regions, which comprise the core barrel-like module of the SET domain, are symmetric repeats of a simple 3-stranded unit. Furthermore, the two symmetrically arranged repeats contribute to the binding sites for the two substrates of the SET domain. This suggests the SET domain arose from an ancestral dimer of this 3-stranded unit, with each unit probably functioning as generic-ligand binding structure. The divergence between the two repeat units appears to have arisen as a result of their interactions with the central module of the SET domain, which was inserted between the two repeats. One of the repeats appears to have acquired adaptations, which helped it to specialize in AdoMet binding, whereas the second repeat contributed to histone-interaction, and in orienting a crucial active site residue. The central module of the SET domain supplies a critical asparagine to the active site, and its structural features suggest that it may have also arisen from a further duplication of one of the repeats comprising the core barrel. However, it appears to have structurally diverged from the two canonical repeats due to the lack of an obligate dimerization partner. The spatial position of the two repeats in the ancestral dimer appears to have favored the formation of the structural knot typical of the SET domain. A comparable knot is seen in the SPOUT-domain methyltransferases, and this represents a case of convergent evolution of an active-site-associated configuration in two otherwise unrelated classes of methylases. Thus, the SET domain provides a model for the innovation of a complex enzymatic fold through the duplications of a structurally simple non-enzymatic unit.  相似文献   

2.
3.
4.
The SET and MYND Domain (SMYD) proteins comprise a unique family of multi-domain SET histone methyltransferases that are implicated in human cancer progression. Here we report an analysis of the crystal structure of the full length human SMYD3 in a complex with an analog of the S-adenosyl methionine (SAM) methyl donor cofactor. The structure revealed an overall compact architecture in which the "split-SET" domain adopts a canonical SET domain fold and closely assembles with a Zn-binding MYND domain and a C-terminal superhelical 9 α-helical bundle similar to that observed for the mouse SMYD1 structure. Together, these structurally interlocked domains impose a highly confined binding pocket for histone substrates, suggesting a regulated mechanism for its enzymatic activity. Our mutational and biochemical analyses confirm regulatory roles of the unique structural elements both inside and outside the core SET domain and establish a previously undetected preference for trimethylation of H4K20.  相似文献   

5.
The SET domain contains the catalytic center of lysine methyltransferases that target the N-terminal tails of histones and regulate chromatin function. Here we report the structure of the SET7/9 protein in the absence and presence of its cofactor product, S-adenosyl-L-homocysteine (AdoHcy). A knot within the SET domain helps form the methyltransferase active site, where AdoHcy binds and lysine methylation is likely to occur. A structure-guided comparison of sequences within the SET protein family suggests that the knot substructure and active site environment are conserved features of the SET domain.  相似文献   

6.
Iyer LM  Aravind L 《Proteins》2004,55(4):977-991
The beta-clip fold includes a diverse group of protein domains that are unified by the presence of two characteristic waist-like constrictions, which bound a central extended region. Members of this fold include enzymes like deoxyuridine triphosphatase and the SET methylase, carbohydrate-binding domains like the fish antifreeze proteins/Sialate synthase C-terminal domains, and functionally enigmatic accessory subunits of urease and molybdopterin biosynthesis protein MoeA. In this study, we reconstruct the evolutionary history of this fold using sensitive sequence and structure comparisons methods. Using sequence profile searches, we identified novel versions of the beta-clip fold in the bacterial flagellar chaperone FlgA and the related pilus protein CpaB, the StrU-like dehydrogenases, and the UxaA/GarD-like hexuronate dehydratases (SAF superfamily). We present evidence that these versions of the beta-clip domain, like the related type III anti-freeze proteins and C-terminal domains of sialic acid synthases, are involved in interactions with carbohydrates. We propose that the FlgA and CpaB-like proteins mediate the assembly of bacterial flagella and Flp pili by means of their interactions with the carbohydrate moieties of peptidoglycan. The N-terminal beta-clip domain of the hexuronate dehydratases appears to have evolved a novel metal-binding site, while their C-terminal domain is likely to adopt a metal-binding TIM barrel-like fold. Using structural comparisons, we show that the beta-clip fold can be further classified into two major groups, one that includes the SAF, SET, dUTPase superfamilies, and the other that includes the phage lambda head decoration protein, the beta subunit of urease and the C-terminal domain of the molybdenum cofactor biosynthesis protein MoeA. Structural comparisons also suggest the beta-clip fold was assembled through the duplication of a three-stranded unit. Though the three-stranded units are likely to have had a common origin, we present evidence that complete beta-clip domains were assembled through such duplications, independently on multiple occasions. There is also evidence for circular permutation of the basic three-stranded unit on different occasions in the evolution of the beta-clip unit. We also describe how assembly of this fold from a basic three-stranded unit has been utilized to accommodate a variety of activities in its different versions.  相似文献   

7.
The MspJI modification-dependent restriction endonuclease recognizes 5-methylcytosine or 5-hydroxymethylcytosine in the context of CNN(G/A) and cleaves both strands at fixed distances (N12/N16) away from the modified cytosine at the 3′-side. We determined the crystal structure of MspJI of Mycobacterium sp. JLS at 2.05-Å resolution. Each protein monomer harbors two domains: an N-terminal DNA-binding domain and a C-terminal endonuclease. The N-terminal domain is structurally similar to that of the eukaryotic SET and RING-associated domain, which is known to bind to a hemi-methylated CpG dinucleotide. Four protein monomers are found in the crystallographic asymmetric unit. Analytical gel-filtration and ultracentrifugation measurements confirm that the protein exists as a tetramer in solution. Two monomers form a back-to-back dimer mediated by their C-terminal endonuclease domains. Two back-to-back dimers interact to generate a tetramer with two double-stranded DNA cleavage modules. Each cleavage module contains two active sites facing each other, enabling double-strand DNA cuts. Biochemical, mutagenesis and structural characterization suggest three different monomers of the tetramer may be involved respectively in binding the modified cytosine, making the first proximal N12 cleavage in the same strand and then the second distal N16 cleavage in the opposite strand. Both cleavage events require binding of at least a second recognition site either in cis or in trans.  相似文献   

8.
BACKGROUND: The betagamma-crystallins belong to a superfamily of two-domain proteins found in vertebrate eye lenses, with distant relatives occurring in microorganisms. It has been considered that an eukaryotic stress protein, spherulin 3a, from the slime mold Physarum polycephalum shares a common one-domain ancestor with crystallins, similar to the one-domain 3-D structure determined by NMR. RESULTS: The X-ray structure of spherulin 3a shows it to be a tight homodimer, which is consistent with ultracentrifugation studies. The (two-motif) domain fold contains a pair of calcium binding sites very similar to those found in a two-domain prokaryotic betagamma-crystallin fold family member, Protein S. Domain pairing in the spherulin 3a dimer is two-fold symmetric, but quite different in character from the pseudo-two-fold pairing of domains in betagamma-crystallins. There is no evidence that the spherulin 3a single domain can fold independently of its partner domain, a feature that may be related to the absence of a tyrosine corner. CONCLUSION: Although it is accepted that the vertebrate two-domain betagamma-crystallins evolved from a common one-domain ancestor, the mycetezoan single-domain spherulin 3a, with its unique mode of domain pairing, is likely to be an evolutionary offshoot, perhaps from as far back as the one-motif ancestral stage. The spherulin 3a protomer stability appears to be dependent on domain pairing. Spherulin-like domain sequences that are found within bacterial proteins associated with virulence are likely to bind calcium.  相似文献   

9.
KorB is a regulatory protein encoded by the conjugative plasmid RP4 and a member of the ParB family of bacterial partitioning proteins. The protein regulates the expression of plasmid genes whose products are involved in replication, transfer, and stable inheritance of RP4 by binding to palindromic 13-bp DNA sequences (5'-TTTAGC(G/C)GCTAAA-3') present 12 times in the 60-kb plasmid. Here we report the crystal structure of KorB-C, the C-terminal domain of KorB comprising residues 297-358. The structure of KorB-C was solved in two crystal forms. Quite unexpectedly, we find that KorB-C shows a fold closely resembling the Src homology 3 (SH3) domain, a fold well known from proteins involved in eukaryotic signal transduction. From the arrangement of molecules in the asymmetric unit, it is concluded that two molecules form a functionally relevant dimer. The detailed analysis of the dimer interface and a chemical cross-linking study suggest that the C-terminal domain is responsible for stabilizing the dimeric form of KorB in solution to facilitate binding to the palindromic operator sequence. The KorB-C crystal structure extends the range of protein-protein interactions known to be promoted by SH3 and SH3-like domains.  相似文献   

10.
The SET domain proteins, SUV39 and G9a have recently been shown to be histone methyltransferases specific for lysines 9 and 27 (G9a only) of histone 3 (H3). The SET domains of the Saccharomyces cerevisiae Set1 and Drosophila trithorax proteins are closely related to each other but distinct from SUV39 and G9a. We characterized the complex associated with Set1 and Set1C and found that it is comprised of eight members, one of which, Bre2, is homologous to the trithorax-group (trxG) protein, Ash2. Set1C requires Set1 for complex integrity and mutation of Set1 and Set1C components shortens telomeres. One Set1C member, Swd2/Cpf10 is also present in cleavage polyadenylation factor (CPF). Set1C methylates lysine 4 of H3, thus adding a new specificity and a new subclass of SET domain proteins known to methyltransferases. Since methylation of H3 lysine 4 is widespread in eukaryotes, we screened the databases and found other Set1 homologues. We propose that eukaryotic Set1Cs are H3 lysine 4 methyltransferases and are related to trxG action through association with Ash2 homologues.  相似文献   

11.
The ring-shaped hetero-oligomeric chaperonin TRiC/CCT uses ATP to fold a diverse subset of eukaryotic proteins. To define the basis of TRiC/CCT substrate recognition, we mapped the chaperonin interactions with the VHL tumor suppressor. VHL has two well-defined TRiC binding determinants. Each determinant contacts a specific subset of chaperonin subunits, indicating that TRiC paralogs exhibit distinct but overlapping specificities. The substrate binding site in these subunits localizes to a helical region in the apical domains that is structurally equivalent to that of bacterial chaperonins. Transferring the distal portion of helix 11 between TRiC subunits suffices to transfer specificity for a given substrate motif. We conclude that the architecture of the substrate binding domain is evolutionarily conserved among eukaryotic and bacterial chaperonins. The unique combination of specificity and plasticity in TRiC substrate binding may diversify the range of motifs recognized by this chaperonin and contribute to its unique ability to fold eukaryotic proteins.  相似文献   

12.
We present a comprehensive analysis of the human methyltransferasome. Primary sequences, predicted secondary structures, and solved crystal structures of known methyltransferases were analyzed by hidden Markov models, Fisher-based statistical matrices, and fold recognition prediction-based threading algorithms to create a model, or profile, of each methyltransferase superfamily. These profiles were used to scan the human proteome database and detect novel methyltransferases. 208 proteins in the human genome are now identified as known or putative methyltransferases, including 38 proteins that were not annotated previously. To date, 30% of these proteins have been linked to disease states. Possible substrates of methylation for all of the SET domain and SPOUT methyltransferases as well as 100 of the 131 seven-β-strand methyltransferases were surmised from sequence similarity clusters based on alignments of the substrate-specific domains.  相似文献   

13.
The PWWP domain is a weakly conserved sequence motif found in > 60 eukaryotic proteins, including the mammalian DNA methyltransferases Dnmt3a and Dnmt3b. These proteins often contain other chromatin-association domains. A 135-residue PWWP domain from mouse Dnmt3b (amino acids 223--357) has been structurally characterized at 1.8 A resolution. The N-terminal half of this domain resembles a barrel-like five-stranded structure, whereas the C-terminal half contains a five-helix bundle. The two halves are packed against each other to form a single structural module that exhibits a prominent positive electrostatic potential. The PWWP domain alone binds DNA in vitro, probably through its basic surface. We also show that recombinant Dnmt3b2 protein (a splice variant of Dnmt3b) and two N-terminal deletion mutants (Delta218 and Delta369) have approximately equal methyl transfer activity on unmethylated and hemimethylated CpG-containing oligonucleotides. The Delta218 protein, which includes the PWWP domain, binds DNA more strongly than Delta369, which lacks the PWWP domain.  相似文献   

14.
We determined the first structure of PRYSPRY, a domain found in over 500 different proteins, involved in innate immune signaling, cytokine signaling suppression, development, cell growth and retroviral restriction. The fold encompasses a 7-stranded and a 6-stranded antiparallel beta-sheet, arranged in a beta-sandwich. In the crystal, PRYSPRY forms a dimer where the C-terminus of an acceptor molecule binds to the concave surface of a donor molecule, which represents a putative interaction site. Mutations in the PRYSPRY domains of Pyrin, which are responsible for familial Mediterranean fever, map on the putative PRYSPRY interaction site.  相似文献   

15.
The extracellular matrix protein F-spondin mediates axon guidance during neuronal development. Its N-terminal domain, termed the reelin-N domain, is conserved in F-spondins, reelins, and other extracellular matrix proteins. In this study, a recombinant human reelin-N domain has been expressed, purified, and shown to bind heparin. The crystal structure of the reelin-N domain resolved to 2.0 Å reveals a variant immunoglobulin-like fold and potential heparin-binding sites. Substantial conformational variations even in secondary structure are observed between the two chemically identical reelin-N domains in one crystallographic asymmetric unit. The variations may result from extensive, highly specific interactions across the interface of the two reelin-N domains. The calculated values of buried surface area and the interface's shape complementarity are consistent with the formation of a weak dimer. The homophilic asymmetric dimer can potentially offer advantages in binding to ligands such as glycosaminoglycans, which may, in turn, bridge the two reelin-N domains and stabilize the dimer.  相似文献   

16.
BACKGROUND: The ornamental tobacco Nicotiana alata produces a series of proteinase inhibitors (PIs) that are derived from a 43 kDa precursor protein, NaProPI. NaProPI contains six highly homologous repeats that fold to generate six separate structural domains, each corresponding to one of the native PIs. An unusual feature of NaProPI is that the structural domains lie across adjacent repeats and that the sixth PI domain is generated from fragments of the first and sixth repeats. Although the homology of the repeats suggests that they may have arisen from gene duplication, the observed folding does not appear to support this. This study of the solution structure of a single NaProPI repeat (aPI1) forms a basis for unravelling the mechanism by which this protein may have evolved. RESULTS: The three-dimensional structure of aPI1 closely resembles the triple-stranded antiparallel beta sheet observed in each of the native PIs. The five-residue sequence Glu-Glu-Lys-Lys-Asn, which forms the linker between the six structural domains in NaProPI, exists as a disordered loop in aPI1. The presence of this loop in aPI1 results in a loss of the characteristically flat and disc-like topography of the native inhibitors. CONCLUSIONS: A single repeat from NaProPI is capable of folding into a compact globular domain that displays native-like PI activity. Consequently, it is possible that a similar single-domain inhibitor represents the ancestral protein from which NaProPI evolved.  相似文献   

17.
UAP56 is an essential eukaryotic pre-mRNA splicing factor and mRNA export factor. The mechanisms of its functions are not well understood. We determined the crystal structures of the N- and C-terminal domains of human UAP56 (comprising 90% of the full-length UAP56) at 1.9 A resolution. The two domains each have a RecA-like fold and are connected by a flexible linker. The overall fold of each domain is highly similar to the corresponding domains of eIF4A (a prototypic DExD/H-box protein), with differences at the loops and termini. This structural similarity suggests that UAP56 is likely to possess ATPase and helicase activity similar to eIF4A. The NTP binding pocket of UAP56 is occupied by a citrate ion, mimicking the phosphates of NTP and retaining the P loop in an open conformation. The crystal structure of the N-terminal domain of UAP56 also reveals a dimer interface that is potentially important for UAP56's function.  相似文献   

18.
With the aim of elucidating the biological function of hypothetical proteins unique amongst the Actynomyces sub-group of bacteria, we have solved the crystal structure of the conserved hypothetical protein Rv1155 from Mycobacterium tuberculosis at 1.8 A resolution. Rv1155 is a homodimer both in the crystal structure and in solution and folds into two separate domains consisting of a six-stranded anti-parallel beta-barrel fold flanked by two alpha-helices and a helix-turn-helix domain. Both domains contribute to the formation of two deep clefts at the dimer interface. The overall fold of Rv1155 strikingly resembles that of flavin mononucleotide-binding protein and pyridoxamine 5'-phosphate oxydase, but the architecture of the putative binding pocket is markedly different, consistent with the lack of color of Rv1155 and its inability to bind FMN. Rv1155 thus appears to belong to a group of proteins with stringent conservation of the binding cleft, having evolved towards a new binding function.  相似文献   

19.
20.
Human high affinity receptor for IgE is a membrane glycoprotein multichain complex presenting two extracellular Ig modules in its alpha-chain (D1D2). The receptor IgE binding region is located within the membrane-proximal module D2, while the N-terminal module D1 appears to promote an optimal receptor conformation for IgE binding. To understand the structural relationship between the two modules, we dissected FcepsilonRI alpha-chain into its discrete Ig units and expressed them in mammalian cells. Unexpectedly, D2 was secreted as a disulphide-linked dimer, while D1 was monomeric. Active secretion and full glycosylation of dimeric D2 suggest a native-like conformation of the protein, justifying the escape from the endoplasmic reticulum/Golgi quality control systems. We then propose a domain-swapping model for D2, in which two interdigitated polypeptide chains assume the overall conformation of two Ig modules, as observed for rat CD2 N-terminal domain. Fusion of an unrelated Ig fold moiety at the N terminus of D2 did not interfere with its dimerisation. While D1D2 assumes a correct fold, co-expression of both isolated domains in the same cell did not restore monomeric folding of D2. Thus, D1 appears to assist the appropriate folding of FcepsilonRI alpha-chain, acting as an uncleavable intramolecular chaperone-like block towards D2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号