首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A field trial was conducted to study the response of sunflower (Helianthus annuus L.) to different phosphorus levels (16, 24 or 32 kg P ha–1) and inoculation with vesicular-arbuscular mycorrhizal fungus, Glomus fasciculatum on vertisol during summer 1993. At the vegetative stage of sunflower, percent mycorrhizal root colonization, spore count, dry biomass and P uptake did not differ significantly between inoculated and uninoculated control plants. However, at later stages (flowering and maturity) percent root colonization, spore count, total dry biomass and total P uptake were significantly higher in inoculated plants than in uninoculated control plants. The total dry biomass, P content and seed yield increased with increasing P level in uninoculated plants, whereas no significant difference was observed between 16 and 32 kg P ha–1 in inoculated plants. The positive effect of mycorrhizal inoculation decreased with increasing P level above 16 kg P ha–1, due to decreased percent root colonization and spore count at higher P levels.  相似文献   

2.
Plant Zn uptake from low Zn soils can be increased by Zn-mobilizing chemical rhizosphere processes. We studied whether inoculation with arbuscular mycorrhizal fungi (AMF) can be an additional or an alternative strategy. We determined the effect of AMF inoculation on growth performance and Zn uptake by rice genotypes varying in Zn uptake when nonmycorrhizal. A pot experiment was conducted with six aerobic rice genotypes inoculated with Glomus mosseae or G. etunicatum or without AMF on a low Zn soil. Plant growth, Zn uptake and mycorrhizal responsiveness were determined. AMF-inoculated plants produced more biomass and took up more Zn than nonmycorrhizal controls. Mycorrhizal inoculation, however, significantly increased Zn uptake only in genotypes that had a low Zn uptake in the nonmycorrhizal condition. We conclude that genotypes that are less efficient in Zn uptake when nonmycorrhizal are more responsive to AMF inoculation. We provide examples from literature allowing generalization of this conclusion on a trade off between mycorrhizal responsiveness and nutrient uptake efficiency.  相似文献   

3.
Summary The dry-matter yield and nitrogen uptake of berseem (Trifolium alexand-drinum), yield, nitrogen uptake, nodulation and leghaemoglobin content of dhaincha (Sesbania aculeata) inoculated with specific rhizobia were appreciably influenced by the application of sodium humate to soil under green house conditions. Even the application of sodium humate alone without bacterial inoculation had good growth stimulating influence on both the crops, and this effect was further improved by the application of inorganic nitrogen to dhaincha plants. A fair increase in the yield and phosphorus up-take of wheat (Triticum vulgare) inoculated withAzotobacter and/orBacillus spp. was also recorded with the addition of the humic material to the soil. The greatest effect was observed on the plants inoculated withAzotobacter andBacillus spp. together.  相似文献   

4.
 Plants growing on an environmentally stressed glacier forefront on soil low in N and organic matter have abundant root colonizations by dark-septate fungi. As the plants appeared fit for this severe habitat, it was hypothesized that the dark-septate endophytes were neutral or beneficial rather than detrimental to the plants. To test this hypothesis, we designed a growth-room experiment with Pinus contorta grown on forefront soil inoculated with the dark-septate fungus Phialocephala fortinii in the absence of climatic stress. N and organic matter treatments were included to explore their interaction with the fungal inoculation. P. fortinii colonized roots inter- and intracellularly and occasionally formed microsclerotia. Inoculated plants absorbed significantly more P than noninoculated plants in all combinations of N and organic matter. Without added N, neither inoculation nor organic matter addition improved plant growth or N uptake, showing that N indeed limits plant growth in this substrate. With added N, however, both organic matter addition and inoculation significantly increased total pine biomass and N uptake. The enhanced P uptake by the P. fortinii-inoculated pine as well as the increased pine growth and N uptake in the treatment combining P. fortinii and N appear as typical mycorrhizal responses. Accepted: 20 October 1997  相似文献   

5.
Arbuscular mycorrhizal fungi (AMF) can promote plant growth and reduce plant uptake of heavy metals. Phosphorus (P) fertilization can affect this relationship. We investigated maize (Zea mays L.) uptake of heavy metals after soil AMF inoculation and P fertilization. Maize biomass, glomaline and chlorophyll contents and uptake of Fe, Mn, Zn, Cu, Cd and Pb have been determined in a soil inoculated with AMF (Glomus aggregatum, or Glomus intraradices) and treated with 30 or 60 µg P-K2HPO4 g?1 soil. Consistent variations were found between the two mycorrhizal species with respect to the colonization and glomalin content. Shoot dry weight and chlorophyll content were higher with G. intraradices than with G. aggregatum inoculation. The biomass was highest with 30 µg P g?1 soil. Shoot concentrations of Cd, Pb and Zn decreased with G. aggregatum inoculation, but that of Cd and Pb increased with G. intraradices inoculation. Addition of P fertilizers decreased Cd and Zn concentrations in the shoot. AMF with P fertilization greatly reduced maize content of heavy metals. The results provide that native AMF with a moderate application rate of P fertilizers can be exploited in polluted soils to minimize the heavy metals uptake and to increase maize growth.  相似文献   

6.
A greenhouse experiment was conducted to evaluate the effectiveness of arbuscular mycorrhizal (AM) fungi in phytoremediation of lead (Pb)-contaminated soil by vetiver grass. Experiment was a factorial arranged in a completely randomized design. Factors included four Pb levels (50, 200, 400, and 800 mg kg?1) as Pb (NO3)2, AM fungi at three levels (non mycorrhizal (NM) control, Rhizophagus intraradices, Glomus versiforme). Shoot and root dry weights (SDW and RDW) decreased as Pb levels increased. Mycorrhizal inoculation increased SDW and RDW compared to NM control. With mycorrhizal inoculation and increasing Pb levels, Pb uptake of shoot and root increased compared to those of NM control. Root colonization increased with mycorrhizal inoculation but decreased as Pb levels increased. Phosphorus concentration and uptake in shoot of plants inoculated with AM fungi was significantly higher than NM control at 200 and 800 mg Pb kg?1. The Fe concentration, Fe and Mn uptake of shoot in plants inoculated with Rhizophagus intraradices in all levels of Pb were significantly higher than NM control. Mycorrhizal inoculation increased Pb extraction, uptake and translocation efficiencies. Lead translocation factor decreased as Pb levels increased; however inoculation with AM fungi increased Pb translocation.  相似文献   

7.
Mohammad MJ  Pan WL  Kennedy AC 《Mycorrhiza》2005,15(4):259-266
Plexiglass pot growth chamber experiments were conducted to evaluate the chemical alterations in the rhizosphere of mycorrhizal wheat roots after inoculation with Glomus intraradices [arbuscular mycorrhizal fungus (AMF)]. Exchange resins were used as sinks for nutrients to determine whether the inoculated plant can increase the solubility and the uptake of P and micronutrients. Treatments included: (1) soil (bulk soil); (2) AMF inoculation no P addition (I–P); (3) no inoculation with no P addition (NI–P); (4) AMF inoculation with addition of 50 mg P (kg soil)–1 (I+P), and (5) no inoculation with addition of 50 mg P (kg soil)–1 (NI+P). The AMF inoculum was added at a rate of four spores of G. intraradices (g soil)–1. The exchange resin membranes were inserted vertically 5 cm apart in the middle of Plexiglass pots. Spring wheat (Triticum aestivum cv. Len) was planted in each Plexiglass pot and grown for 2 weeks in a growth chamber where water was maintained at field capacity. Rhizosphere pH and redox potential (Eh), nutrient bioavailability indices and mycorrhizal colonization were determined. Mycorrhizal inoculation increased the colonization more when P was not added, but did not increase the shoot dry weight at either P level. The rhizosphere pH was lower in the inoculated plants compared to the noninoculated plants in the absence of added P, while the Eh did not change. The decrease in pH in the rhizosphere of inoculated plants could be responsible for the increased P and Zn uptake observed with inoculation. In contrast, Mn uptake was decreased by inoculation. The resin-adsorbed P was increased by inoculation, which, along with the bioavailability index data, may indicate that mycorrhizal roots were able to increase the solubility of soil P.  相似文献   

8.
为了解丛枝菌根真菌(AMF)和不同形态氮对杉木(Cunninghamia lanceolata)生长和养分吸收的影响,以1 a生杉木幼苗接种摩西球囊霉(Glomus mosseae)和添加不同形态氮(NH4+-N和NO3-N),对其养分元素和生长状况的变化进行研究。结果表明,AMF显著提高了杉木的苗高和生物量,促进了杉木对N、P、K、Ca、Mg、Fe和Na的吸收,AMF对微量元素Fe、Na的促进作用总体上要强于大量元素K、Ca。与NO3-N相比,AMF显著提高了NH4+-N处理杉木的生物量、总C和N、Ca、Mg、Mn含量,而且这种显著性在叶中普遍高于根和茎。接种AMF可以促进杉木幼苗的生长和对养分元素的吸收,且添加NH4+-N处理的促进作用要强于NO3-N。  相似文献   

9.
The interaction between native and introduced fungi and their effect on plant growth and mineral uptake were studied. The host plants wereLygeum spartum andAnthyllis cytisoides, the introduced fungus wasGlomus fasciculatum. The four soils used were selected from disturbed and contaminated by mining activities areas. Inoculated and uninoculated plants were grown in the unsterilized and sterilized soils (with and withouth native microflora, respectively). Plants inoculated withG. fasciculatum were higher and had higher tissue P concentration than uninoculated plants, especially inA. cytisoides. However, this inoculation was not effective in unsterilized substrates, suggesting a competition between introduced and native fungi. Concentration of mineral elements other than P varied depending on the host plant and soil. Decrease in Fe, Cu, Mn, Zn and Pb was observed in mycorrhizalA. cytiosides plants and a slight increase in Zn concentration was noted in mycorrhizalL. spartum plants. The study showed that the type of soil and their populations of native endophytes have a considerable effect on plant response to mycorrhizal symbiosis, especially in disturbed soils.  相似文献   

10.
The influence of inoculation with phosphate-solubilizing bacteria (Enterobacter agglomerans) on maize growth, P uptake and root exudation was studied. Plants were grown in an axenic culture device where P was supplied as soluble phosphate at different contents (0, 5, 15 or 25 ppm) in the nutrient solution and as insoluble rock phosphate added to the culture sand. Experimental device was successfully used to obtain axenic root systems or good establishment of the inoculated strain in the rhizosphere of maize (109 bact. g−1 dry rhizospheric material). Plant growth was promoted by inoculation only for 5 or 15 ppm of soluble P in the nutrient medium without any significant effect on P uptake by the plant, suggesting that the quantities of P released by bacterial rhizospheric activity were very small. Amounts of organic compounds (total C and water-soluble C) exuded were relatively low (3.0 to 6.4% of the total plant biomass) and were reduced by bacterial inoculation when plant growth was largely promoted. Carbon balance modification and plant growth hormone production by the inoculated strain were suspected and discussed.  相似文献   

11.
  • The ability of plant growth‐promoting rhizobacteria (PGPR) to enhance Lathyrus sativus tolerance to lead (Pb) stress was investigated.
  • Ten consortia formed by mixing four efficient and Pb‐resistant PGPR strains were assessed for their beneficial effect in improving Pb (0.5 mM) uptake and in inducing the host defence system of L. sativus under hydroponic conditions based on various physiological and biochemical parameters.
  • Lead stress significantly decreased shoot (SDW) and root (RDW) dry weight, but PGPR inoculation improved both dry weights, with highest increases in SDW and RDW of plants inoculated with I5 (R. leguminosarum (M5) + P. fluorescens (K23) + Luteibacter sp. + Variovorax sp.) and I9 (R. leguminosarum (M5) + Variovorax sp. + Luteibacter sp. + S. meliloti) by 151% and 94%, respectively. Additionally, inoculation significantly enhanced both chlorophyll and soluble sugar content, mainly in I5 inoculated leaves by 238% and 71%, respectively, despite the fact that Pb decreased these parameters. We also found that PGPR inoculation helps to reduce oxidative damage and enhances antioxidant enzyme activity, phenolic compound biosynthesis, carotenoids and proline content. PGPR inoculation increased Pb uptake in L. sativus, with highest increase in shoots of plants inoculated with I5 and I7, and in roots and nodules of plants inoculated with I1. Moreover, PGPR inoculation enhanced mineral homeostasis for Ca, Cu and Zn under Pb stress, mainly in plants inoculated with I1, I5, I7 and I9.
  • Results of our study suggest the potential of efficient and Pb‐resistant PGPR in alleviating harmful effects of metal stress via activation of various defence mechanisms and enhancing Pb uptake that promotes tolerance of L. sativus to Pb stress.
  相似文献   

12.
13.
To examine the effects of microbial populations and external phosphorus supply of two Philippine soils on mycorrhizal formation, Eucalyptus urophylla seedlings were inoculated with two Pisolithus isolates and grown in fumigated, reinfested and unfumigated soil fertilized with four rates of phosphorus. The Pisolithus isolates used were collected from under eucalypts in Australia and in the Philippines. Soils were infertile acid silty loams collected from field sites in Pangasinan, Luzon and Surigao, Mindanao.Significant interaction was observed between inoculation, soil fumigation and phosphorus supply on mycorrhizal formation by the Australian isolate in Surigao soil but not in Pangasinan soil. Soil fumigation enhanced mycorrhizal formation by the Australian isolate but did not affect root colonization by the Philippine isolate. Root colonization by the Australian isolate was highest in the reinfested soil while for the Philippine isolate it was highest in the unfumigated soil. The Australian isolate was more effective than the Philippine isolate in promoting growth and P uptake of E. urophylla seedlings in both soils. Total dry weight and P uptake of E. urophylla seedlings inoculated with the Australian isolate were maximum in fumigated and in the reinfested Pangasinan and Surigao soils supplied with 8 mg P kg-1 soil. In the unfumigated soil, growth of seedlings inoculated with the Australian isolate was significantly reduced. Seedlings inoculated with the Philippine isolate had the largest dry weights and P contents in unfumigated Pangasinan and Surigao soils supplied with 8 mg P kg-1 soil.These results indicate that the performance of the Australian Pisolithus isolate was markedly affected by biological factors in unfumigated soil. Thus, its potential use in the Philippines needs to be thoroughly tested in a variety of unfumigated soils before its widespread use in any inoculation programme.  相似文献   

14.
Single doses of benomyl, 0–4 g/plant in 1972 or 0–04 g in 1973, were applied in 100 ml water to the surface of the soil in 12-5 cm pots containing Cambridge Vigour strawberry plants, either before inoculation with Verticillium dahliae or at various times up to 56 days afterwards. Pre-inoculation treatments were terminated by washing the potting medium from the roots at the time of inoculation and their effects on pathogenesis and growth were relatively small. Post-inoculation treatments with benomyl prevented or suspended pathogenesis for at least as long as fungistatic activity could be detected in petiole segments by bioassay; this was for more than 150 days after the larger dose, 50–60 days after the smaller dose applied 7–28 days after inoculation and 30 days when applied 56 days after inoculation. There were no consistent differences in the uptake and persistence of benomyl in inoculated and non-inoculated plants. Early post-inoculation treatment caused some retardation of plant growth, but benomyl-treated inoculated plants were generally comparable in size with similarly treated non-inoculated ones, and much larger than untreated inoculated plants. Increasing the dose of benomyl applied to the soil apparently had little influence on the intensity of its effects but greatly increased their duration, probably because of the low solubility of the systemic chemical.  相似文献   

15.
Summary The efficiency of the inoculation of three cultures of N-fixing blue-green algaeviz. (i)Aulosira fertilissima (A1), (ii)Nostoc muscorum (A2) and (iii) their mixture (A3) in increasing the grain and straw yield of rice, nitrogen uptake in grain and nitrogen content in soil was studied in a green house experiment with an alluvial soil in presence or absence of urea nitrogen application. Inoculation significantly increased the grain and straw yield of rice and nitrogen uptake in grain, but the efficiency of inoculation gradually decreased with the increase in the levels of urea nitrogen application, the extent of decrease varying with the algal cultures inoculated. The nitrogen content in the soils after the crop harvest recorded a significant increase due to inoculation but after air drying the soil a marker decrease of the same was observed, which indicated that most of the nitrogen added to the soil by blue-green algae through fixation did not persist after air drying the soil.  相似文献   

16.
Summary Growth and mineral uptake of twenty-four tropical forage legumes and grasses were compared under glasshouse conditions in a sterile low P oxisol, one part inoculated and the other not inoculated with mycorrhizal fungi. Shoot and root dry weights and total uptake of P, N, K, Ca, and Mg of all the test plants were significantly increased by mycorrhizal inoculation. Mycorrhizal inoculation, with few exceptions, decreased the root/shoot ratio. Non-mycorrhizal plants contained always lower quantities of mineral elements than mycorrhizal plants. Plant species showed differences in percentage mycorrhizal root length and there was no correlation between percentage mycorrhizal infection and plant growth parameters. A great variation in dependence on mycorrhiza was observed among forage species. Total uptake of all elements by non-mycorrhizal legumes and uptake of P, N and K by non-mycorrhizal grasses correlated inversely with mycorrhizal dependency. Mycorrhizal plants of all species used significantly greater quantities of soil P than the nonmycorrhizal plants. Utilization of soil P by non-mycorrhizal plants was correlated inversely with mycorrhizal dependency.  相似文献   

17.
Responses to inoculation with N2-fixing bacteria were studied in relation to genotypic differences in pearl millet, effect of nitrogen levels, and FYM additions in India. In some experiments, inoculation increased mean grain yield up to 33% over the uninoculated control, whereas in the remaining 11 experiments there was no significant increase. Increased grain yields, >10% over the uninoculated controls were observed in 46% of the experiments withAzospirillum lipoferum (18.7% average increase) and withAzotobacter chroococcum (13.6% average increase). Yield increases were nil or reduced in three experiments withAzos. lipoferum and four experiments withAztb. chroococcum. In two experiments continued inoculation for two or three years resulted in increased grain, plant biomass yield, and N uptake. Interactions of bacterial cultures with cultivars or years were not observed. The counts of the inoculated strains increased two to three-fold when inoculation was continued for three years. Repeated inoculations increased the mean cumulative N uptake from season 1 to season 3 by 19 kg ha–1. Repeated inoculations withAztb. chroococcum andAzos. lipoferum increased mean grain yield of a succeeding crop by 14.4% and 9.8%, respectively, over the uninoculated control. Inoculation increased the efficiency of N-assimilation by pearl millet. Marginal increase in nitrogenase activity, associated with the inoculated plants was observed during later stages of plant growth. Increased leaf nitrate reductase activity (NRA) was observed after inoculation with these bacteria. The responses to inoculation are mainly attributable to increased plant N assimilation which could be the effect of growth promoting substances secreated by the bacteria; and thus the contribution from BNF may be small.CRISAT, journal article 732.  相似文献   

18.
An influence of dual inoculation with the rhizosphere bacteriumAgrobacterium radiobacter, and the VAM fungi,Glomus mosseae andGlomus sp., on maize growth and mycorrhizal infection was observed. Separate inoculations of bacteria or fungi showed significant positive effects on the shoot biomass production of pot-cultured plants only at the last of three consecutive harvests. Plant biomass production was enhanced substantially after a dual inoculation with bacteria and fungi. Synergistic interaction of fungal and bacterial inoculation and growth stimulation was evident at all three harvests compared to uninoculated plants and also compared to plants inoculated with fungi or bacteria only. The dual inoculation increased the shoot biomass of plants by approximately 30% as compared with control. No significant differences were found in mycorrhizal infection between plants uninoculated and inoculated with bacteria.Agrobacterium radiobacter seems to be compatible with mycorrhizal symbiosis and can act a synergistic partner of some VAM fungi.  相似文献   

19.
A split-root experiment investigated the effects of inoculation with the arbuscular mycorrhizal fungus Glomus mosseae and arsenic (As) addition on As uptake by Pteris vittata L. Either part or all of the root system was inoculated with G. mosseae or exposed to As addition (50 ml 1000 μmol L−1 As 1 week before harvest). Mycorrhizal colonization substantially increased frond and root dry weight and P and As contents irrespective of As addition. Frond As contents in mycorrhizal plants were highest when the whole root system was exposed to As. Frond As concentrations and contents were higher when inoculation and As addition were in the same parts of the root system than when spatially separate. There were positive effects of arbuscular mycorrhiza inoculation on plant growth and As uptake, and inoculation of part of the roots seemed to be as effective as inoculation of the whole root system.  相似文献   

20.
Medicato sativa plants were grown with and without inoculation with an effectiveR. meliloti strain on nitrogenfree agar slopes. Half of the uninoculated replications were, furthermore, provided with a sufficient amount of the NH4NO3 fertilizer, the fertilizer-treated plants (+N plants) achieved dry matter yield equal to that of inoculated variants. The concentration and uptake of Cl, Mn, Cu, Zn, Br, Sr and Mo were found to be significantly lower in inoculated plants relative to the +N plants indicating that these composition alterations are constitutive to the induced biological nitrogen fixation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号