首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The caspases are known to play a pivotal role in the triggering and execution of apoptosis in virtually all cell types. Because inappropriate apoptosis is a prominent feature of many human diseases, the caspases are attractive targets for therapeutic intervention. In the present study we investigated whether Jurkat T lymphocytes rescued from Fas-induced cell death through the inhibition of caspases are functional. Here we show that the pan-caspase, tripeptide inhibitor, benzyloxycarbonyl-Val-Ala-Asp (Ome) fluoromethylketone (z-VAD-FMK), inhibited the activation of caspase-2, -3, -7, and -8, and subsequently apoptosis in Jurkat T lymphocytes induced by agonistic anti-Fas. The apoptotic signals induced by the cross-linking of the Fas antigen have a relatively long half-life, as z-VAD-FMK had to be continuously present in the culture medium for 72 h after Fas stimulation in order to maintain cell survival. After 72 h, the z-VAD-FMK-rescued cells proliferate normally and responded to activation induced cell death after phytohaemaglutinin treatment, and readily undergo apoptosis when restimulated with agonistic Fas antibodies. Taken together, our results demonstrate that Jurkat T cells rescued from Fas-mediated cell death through the inhibition of caspases are functional.  相似文献   

2.
CD47 signals T cell death.   总被引:10,自引:0,他引:10  
Activation-induced death of T cells regulates immune responses and is considered to involve apoptosis induced by ligation of Fas and TNF receptors. The role of other receptors in signaling T cell death is less clear. In this study we demonstrate that activation of specific epitopes on the Ig variable domain of CD47 rapidly induces apoptosis of T cells. A new mAb, Ad22, to this site induces apoptosis of Jurkat cells and CD3epsilon-stimulated PBMC, as determined by morphological changes, phosphatidylserine exposure on the cell surface, uptake of propidium iodide, and true counts by flow cytometry. In contrast, apoptosis was not observed following culture with anti-CD47 mAbs 2D3 or B6H12 directed to a distant or closely adjacent region, respectively. CD47-mediated cell death was independent of CD3, CD4, CD45, or p56lck involvement as demonstrated by studies with variant Jurkat cell lines deficient in these signaling pathways. However, coligation of CD3epsilon and CD47 enhanced phosphatidylserine externalization on Jurkat cells with functional CD3. Furthermore, normal T cells required preactivation to respond with CD47-induced apoptosis. CD47-mediated cell death appeared to proceed independent of Fas or TNF receptor signaling and did not involve characteristic DNA fragmentation or requirement for IL-1beta-converting enzyme-like proteases or CPP32. Taken together, our data demonstrate that under appropriate conditions, CD47 activation results in very rapid T cell death, apparently mediated by a novel apoptotic pathway. Thus, CD47 may be critically involved in controlling the fate of activated T cells.  相似文献   

3.
Galectin-9, a mammalian lectin with affinity for beta-galactosides, is known as an apoptosis inducer of activated T lymphocytes. In the present study, we examined the properties of galectin-9-mediated cell death of Jurkat T cells. Galectin-9NC (wild-type), consisting of two CRDs (N-terminal and C-terminal carbohydrate recognition domains), and derivatives of it, galectins-9-NN and -9-CC, induced Jurkat T-cell apoptosis. However, a single CRD (galectin-9NT or -CT) had no effect, suggesting the stable dimeric structure of two CRDs is required for the activity. The apoptosis was inhibited by pretreatment with an N-glycan synthesis inhibitor, indicating that the expression of N-glycans in the cells is essential for galectin-9-induced apoptosis. We previously showed that the apoptosis of MOLT-4 cell is mediated by galectin-9 via a Ca(2+)-calpain-caspase-1-dependent pathway. In Jurkat cells, the cell death by galectin-9, was insufficiently suppressed by caspase inhibitors, Ca(2+)-chelator or calpain inhibitor. Furthermore, we observed the loss of mitochondrial membrane potential and significant AIF release in galectin-9-treated cells. These findings suggest that caspase-dependent and-independent death pathways exist in Jurkat cells, and the main pathway might vary with the T-cell type.  相似文献   

4.
24(S)-hydroxycholesterol (24S-OHC), which is enzymatically produced in the brain, has an important role in maintaining brain cholesterol homeostasis. We have previously reported that 24S-OHC induces necroptosis in human neuroblastoma SH-SY5Y cells. In the present study, we investigated the mechanisms by which 24S-OHC-induced cell death occurs. We found that lipid droplets formed at the early stages in the treatment of SH-SY5Y cells with 24S-OHC. These lipid droplets could be almost completely eliminated by treatment with a specific inhibitor or by siRNA knockdown of acyl-CoA:cholesterol acyltransferase 1 (ACAT1). In association with disappearance of lipid droplets, cell viability was recovered by treatment with the inhibitor or siRNA for ACAT1. Using gas chromatography–mass spectrometry, we confirmed that 24S-OHC-treated cells exhibited accumulation of 24S-OHC esters but not of cholesteryl esters and confirmed that accumulation of 24S-OHC esters was reduced when ACAT1 was inhibited. 24S-OHC induced apoptosis in T-lymphoma Jurkat cells, which endogenously expressed caspase-8, but did not induce apoptosis in SH-SY5Y cells, which expressed no caspase-8. In Jurkat cells treated with the pan-caspase inhibitor ZVAD and in caspase-8-deficient Jurkat cells, 24S-OHC was found to induce caspase-independent cell death, and this was partially but significantly inhibited by Necrostatin-1. Similarly, knockdown of receptor-interacting protein kinase 3, which is one of the essential kinases for necroptosis, significantly suppressed 24S-OHC-induced cell death in Jurkat cells treated with ZVAD. These results suggest that 24S-OHC can induce apoptosis or necroptosis, which of the two is induced being determined by caspase activity. Regardless of the presence or absence of ZVAD, 24S-OHC treatment induced the formation of lipid droplets and cell death in Jurkat cells, and this was suppressed by treatment with ACAT1 inhibitor. Collectively, these results suggest that it is ACAT1-catalyzed 24S-OHC esterification and the resulting lipid droplet formation that is the initial key event which is responsible for 24S-OHC-induced cell death.  相似文献   

5.
Nanosecond pulsed electric fields (nsPEFs) have recently gained attention as effective cancer therapy owing to their potency for cell death induction. Previous studies have shown that apoptosis is a predominant mode of nsPEF-induced cell death in several cell lines, such as Jurkat cells. In this study, we analyzed molecular mechanisms for cell death induced by nsPEFs. When nsPEFs were applied to Jurkat cells, apoptosis was readily induced. Next, we used HeLa S3 cells and analyzed apoptotic events. Contrary to our expectation, nsPEF-exposed HeLa S3 cells exhibited no molecular signs of apoptosis execution. Instead, nsPEFs induced the formation of poly(ADP-ribose) (PAR), a hallmark of necrosis. PAR formation occurred concurrently with a decrease in cell viability, supporting implications of nsPEF-induced PAR formation for cell death. Necrotic PAR formation is known to be catalyzed by poly(ADP-ribose) polymerase-1 (PARP-1), and PARP-1 in apoptotic cells is inactivated by caspase-mediated proteolysis. Consistently, we observed intact and cleaved forms of PARP-1 in nsPEF-exposed and UV-irradiated cells, respectively. Taken together, nsPEFs induce two distinct modes of cell death in a cell type-specific manner, and HeLa S3 cells show PAR-associated non-apoptotic cell death in response to nsPEFs.  相似文献   

6.
Microparticles are small membrane vesicles released from the cell membrane by exogenous budding. To elucidate the interactions of microparticles with macrophages, the effect of microparticles released from Jurkat T cells on RAW 264.7 cells was determined. Microparticles were isolated by differential centrifugation, using FACS analysis with annexin V and cell surface markers for identification. Various inducers of apoptosis increased the release of microparticles from Jurkat cells up to 5-fold. The released microparticles were then cultured with RAW 264.7 cells. As shown by confocal microscopy and FACS analysis, RAW 264.7 macrophages cleared microparticles by phagocytosis. In addition, microparticles induced apoptosis in RAW 264.7 cells in a dose-dependent manner with up to a 5-fold increase of annexin V positive cells and 9-fold increase in caspase 3 activity. Cell proliferation as determined by the MTT test was also reduced. Furthermore, microparticles stimulated the release of microparticles from macrophages. These effects were specific for macrophages, since no apoptosis was observed in NIH 3T3 and L929 cells. These findings indicate that microparticles can induce macrophages to undergo apoptosis, in turn resulting in a further increase of microparticles. The release of microparticles from apoptotic cells may therefore represent a novel amplification loop of cell death.  相似文献   

7.
L-Canavanine, a natural L-arginine analog, is known to possess cytotoxicity to tumor cells in culture and experimental tumors in vivo. In this study, we first show that apoptotic cell death is associated with antitumor activity of L-canavanine against human acute leukemia Jurkat T cells. When Jurkat T cells were treated with 1.25-5.0mM L-canavanine for 36 h, apoptotic cell death accompanying several biochemical events such as caspase-3 activation, degradation of poly(ADP-ribose) polymerase (PARP), and apoptotic DNA fragmentation was induced in a dose-dependent manner; however, cytochrome c release from mitochondria was not detected. Under these conditions, the expression of Bcl-2 and its functional homolog Bcl-xL was markedly upregulated. The L-canavanine-induced caspase-3 activation, degradation of PARP, and apoptotic DNA fragmentation were suppressed by ectopic expression of Bcl-2 or Bcl-xL, both of which are known to play roles as anti-apoptotic regulators. These results demonstrate that the cytotoxic effect of L-canavanine on Jurkat T cells is attributable to the induced apoptosis and that L-canavanine-induced apoptosis is mediated by a cytochrome c-independent caspase-3 activation pathway that can be interrupted by Bcl-2 or Bcl-xL.  相似文献   

8.
13-Methyltetradecanoic acid (13-MTD), a saturated branched-chain fatty acid purified from soy fermentation products, induces apoptosis in human cancer cells. We investigated the inhibitory effects and mechanism of action of 13-MTD on T-cell non-Hodgkin’s lymphoma (T-NHL) cell lines both in vitro and in vivo. Growth inhibition in response to 13-MTD was evaluated by the cell counting kit-8 (CCK-8) assay in three T-NHL cell lines (Jurkat, Hut78, EL4 cells). Flow cytometry analyses were used to monitor the cell cycle and apoptosis. Proteins involved in 13-MTD-induced apoptosis were examined in Jurkat cells by western blotting. We found that 13-MTD inhibited proliferation and induced the apoptosis of T-NHL cell lines. 13-MTD treatment also induced a concentration-dependent arrest of Jurkat cells in the G1-phase. During 13-MTD-induced apoptosis in Jurkat cells, the cleavage of caspase-3 and poly ADP-ribose polymerase (PARP, a caspase enzymolysis product) were detected after incubation for 2 h, and increased after extending the incubation time. However, there was no change in the expression of Bcl-2 or c-myc proteins. The appearance of apoptotic Jurkat cells was accompanied by the inhibition of AKT and nuclear factor-kappa B (NF-κB) phosphorylation. In addition, 13-MTD could also effectively inhibit the growth of T-NHL tumors in vivo in a xenograft model. The tumor inhibition rate in the experimental group was 40%. These data indicate that 13-MTD inhibits proliferation and induces apoptosis through the down-regulation of AKT phosphorylation followed by caspase activation, which may provide a new approach for treating T-cell lymphomas.  相似文献   

9.
Staphylococcus aureus infections can result in septic and toxic shock with depletion of immune cells and massive cytokine production. Recently, we showed that, in S. aureus-infected Jurkat T cells, alpha-toxin is the major mediator of caspase activation and apoptosis. Here, we investigated the mechanisms of cell death induced by alpha-toxin in peripheral blood mononuclear cells (MNC). We show that alpha-toxin is required and sufficient for S. aureus-induced cell death not only in transformed Jurkat T cells but also in MNC. Low alpha-toxin doses (3-30 ng ml-1) dose- and time-dependently induced apoptosis in both cell types, which was completely blocked by the caspase inhibitor zVAD-fmk. In Jurkat T cells and MNC, alpha-toxin induced the breakdown of the mitochondrial membrane potential and the intrinsic activation of caspase-3, -8 and -9. Interestingly, unlike in Jurkat T cells, apoptosis in MNC was additionally mediated by a caspase-9-independent component. MNC, but not Jurkat T cells, produced tumour necrosis factor (TNF)-alpha upon alpha-toxin stimulation. Blocking endogenous TNF-alpha with a TNF-alpha receptor antagonist partially decreased apoptosis in MNC. Our data therefore suggest that, whereas in Jurkat T cells apoptosis is solely mediated by the mitochondrial pathway, in MNC endogenous TNF-alpha and a death receptor-dependent pathway are also involved, which may contribute to depletion of immune cells during S. aureus infection.  相似文献   

10.
In this study, we characterize the function of the tumor suppressor gene PTEN in Jurkat T cells. We established stable clones of Jurkat T cells that inducibly express either wild-type or phosphatase-inactive PTEN. We show here that PTEN potently inhibited the growth and reduced the size of Jurkat cells. The growth-suppressive effect of PTEN was associated with its ability to induce apoptotic cell death with little or no effect on cell cycle. PTEN also rendered Jurkat cells more susceptible to apoptosis induced by various stimuli. Furthermore, PTEN expression led to a reduction in the level of 3'-phosphorylated phospholipids and thus altered the activity and localization of Akt. Finally, coexpression of constitutively active Akt reversed the effects caused by PTEN. In summary, our results suggest that PTEN suppresses cell growth, promotes apoptosis, and decreases cell size by negatively regulating the phosphoinositide 3-kinase/Akt pathway in Jurkat T cells.  相似文献   

11.
Using a bisubstituted caspase-3 target sequence: aspartate-glutamate-valine-aspartate, (z-DEVD)2 peptide derivative of the fluorophore, cresyl violet, we have obtained a cell permeant, fluorogenic, caspase substrate capable of detecting the site-specific presence of functionally active, caspase-3 and caspase-7 up-regulation within intact apoptotic cells. Addition of this substrate to induced and noninduced cell culture populations allows for the rapid site-specific detection of caspase up-regulation without the requirement for a wash step. We demonstrate here the use of (z-DEVD)2-cresyl violet substrate for the detection of apoptosis induction in Jurkat, THP-1, and MCF-7 cells using fluorescence microscopy and 96-well fluorescence plate reader analysis. Intracellular up-regulated DEVDase activity, which was clearly visible by fluorescence microscopy and 96-well fluorescence plate reader measurements, showed greater than 6-fold increases in fluorescence output in induced versus noninduced Jurkat cell samples. A simple fluorogenic substrate conversion method is demonstrated here for detecting apoptosis induction within intact living cells.  相似文献   

12.
Chen K  Li D  Jiang YH  Yao WJ  Wang XJ  Wei XC  Gao J  Xie LD  Yan ZY  Wen ZY  Chien S 《Cell research》2004,14(2):161-168
The cDNA fragment of human TRAIL (TNF-related apoptosis inducing ligand) was cloned into RevTet-On, a Tetregulated and high-level gene expression system. The gene expression system was constructed in a human leukemic cell line: Jurkat. By using RevTet-On TRAIL gene expression system in Jurkat as a cell model, we studied the influence of TRAIL gene on the changes of cellular apoptosis before and after the TRAIL gene expression, which was induced by adding tetracycline derivative doxycycline (Dox). The results indicated that the cellular apoptosis ratio was largely dependent on the TRAIL gene expression level. Moreover, it was found that the apoptosis-inducing TRAIL could cause significant changes in the biophysical properties of Jurkat cells. The cell surface charge density decreased, the membrane fluidity declined, the elastic coefficients K1 increased, and the proportion of α-helix in membrane protein secondary structure decreased. Thus, the apoptosis-inducing TRAIL gene caused significant changes on the biomechanic properties of Jurkat cells.  相似文献   

13.
Tumors can promote their own progressive growth by inducing T cell apoptosis. Though previous studies suggested that tumor-mediated T cell killing is receptor dependent, we recently showed that tumor gangliosides also participate, a notion consistent with reports indicating that, in some cell types, gangliosides can activate the intrinsic apoptotic pathway by stimulating reactive oxygen species production, cytochrome c release, and caspase-9 activation. In this study, we used normal peripheral blood T cells, as well as caspase-8-, caspase-9-, and Fas-associated death domain protein-deficient Jurkat cells, to assess whether the death ligands and gangliosides overexpressed by the renal cell carcinoma (RCC) cell line SK-RC-45 can independently stimulate T cell apoptosis as a mechanism of immune escape. Anti-FasL Abs and the glycosylceramide synthase inhibitor 1-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol (PPPP) each partially inhibited the ability of SK-RC-45 to kill cocultured activated T cells; together, as purified molecules, RCC gangliosides and rFasL induced a more extensive mitochondrial permeability transition and greater levels of apoptosis than either agent alone, equivalent to that induced by the FasL- and ganglioside-expressing RCC line itself. rFasL-mediated apoptosis was completely inhibited in caspase-8- and Fas-associated death domain protein-negative Jurkat cells, though apoptosis induced by purified gangliosides remained intact, findings that correlate with the observed partial inhibition of SK-RC-45-induced apoptosis in the Jurkat lines with defective death receptor signaling. Western blot analysis performed on lysates made from wild-type and mutant Jurkat cells cocultured with SK-RC-45 revealed caspase activation patterns and other biochemical correlates which additionally supported the concept that tumor-associated gangliosides and FasL independently activate the caspase cascade in T cells through the intrinsic and extrinsic pathways, respectively.  相似文献   

14.
Lee SH  Park SW  Pyo CW  Yoo NK  Kim J  Choi SY 《Biochimie》2009,91(1):102-108
The cell proliferation of p53-deficient Jurkat T cells is controlled after prolonged exposure to human lactoferrin (Lf). However, the molecular mechanism by which Lf influences these cellular responses remains unclear. In this study, we demonstrate that Lf-induced apoptosis in Jurkat T cells occurs in a dose- and time-dependent manner via the regulation of c-Jun N-terminal kinase (JNK) activity. Jurkat cells exposed to Lf for 1 day, especially at concentrations in excess of 500 microg/ml, showed typical apoptosis, as indicated by decreased cell viability and increased Annexin V binding. Our results also showed that Lf induced the activation of caspase 9 and caspase 3 activation, as demonstrated by our detection of cleaved caspases and PARP. Lf-induced apoptosis did not influence Bcl-2 expression via an ERK1/2 phosphorylation pathway, but was rather associated with the level of Bcl-2 phosphorylation. The treatment of cells with the specific JNK inhibitor SP600125, but not the p38 MAPK inhibitor SB203580, revealed that the JNK-Bcl-2 signaling cascade is required for Lf-induced apoptosis. When JNK activation was abolished by SP600125, no Bcl-2 phosphorylation was detected, and the Lf-treated Jurkat cells did not undergo cell death. These findings indicate that Lf functions as a biological mediator of apoptosis in the human leukemia Jurkat T-cell line, via the JNK-associated Bcl-2 signaling pathway.  相似文献   

15.
GuoBC XuYU 《Cell research》2001,11(2):101-106
Trail, a tumor necrosis factor-related apoptosis-inducing ligand, is a novel potent endogenous activator of the cell death pathway through the activation of cell surface death receptors Trail-R1 and Trail-R2. Its role, like FasL in activation-induced cell death (AICD), has been demonstrated in immune system. However the mechanism of Trail induced apoptosis remains unclear. In this report, the recombinant Trail protein was expressed and purified. The apoptosis-inducing activity and the regulation mechanism of recombinant Trail on Jurkat T cells were explored in vitro. Trypan blue exclusion assay demonstrated that the recombinant Trail protein actively killed Jurkat T cells in a dose-dependent manner. Trail-induced apoptosis in Jurkat T cells were remarkably reduced by Bcl-2 over expression in Bcl-2 gene transfected cells. Treatment with PMA (phorbol 12-myristate 13-acetate), a PKC activator, suppressed Trail-induced apoptosis in Jurkat T cells. The inhibition of apoptosis by PMA was abolished by pretreatment with Bis, a PKC inhibitor. Taken together, it was suggested that Bcl-2 over-expression and PMA activated PKC actively down-regulated the Trail-mediated apoptosis in Jurkat T cell.  相似文献   

16.
INTRODUCTIONThaillll (TNF-related apoptosis inducing ligand)is a recently described member of the TNF family.Like other members of the TNF ligand family) availcould induce apoptosis of neoplastically transformedcells by priVating cell surface death receptors ThailRI and ThaiLR212].Trail has been demonstrated to play an important role in homeostasis of immune system includ.lug eradication of the old lymphocytel3], actiVationinduced T cell deathI41, regulation Of T cen eXPansion by…  相似文献   

17.
The mechanisms by which tumor cells extravasate to form metastasis remain controversial. Previous studies performedin vivoandin vitrodemonstrate that the contact between tumor cells and the vascular wall impairs endothelium integrity. Here, we investigated the effect of breast adenocarcinoma MCF-7 cells on the apoptosis of human umbilical vein endothelial cells (HUVEC). TUNEL labeling, nuclear morphology, and DNA electrophoresis indicated that MCF-7 cells induced a two- to fourfold increase in HUVEC apoptosis. Caspase-3 activity was significantly enhanced. Neither normal cells tested (mammary epithelial cells, fibroblasts, leukocytes) nor transformed hematopoietic cells tested (HL60, Jurkat) induced HUVEC apoptosis. On the contrary, cells derived from solid tumors (breast adenocarcinoma, MDA-MB-231 and T47D; fibrosarcoma, HT 1080) had an effect similar to that of MCF-7 cells. The induction of apoptosis requires cell-to-cell contact, since it could not be reproduced by media conditioned by MCF-7 cells cultured alone or cocultured with HUVEC. Our results suggest that cells derived from solid tumors may alter the endothelium integrity by inducing endothelial cell apoptosis. On the contrary, normal or malignant leukocytes appear to extravasate by distinct mechanisms and do not damage the endothelium. Our data may lead to a better understanding of the steps involved in tumor cell extravasation.  相似文献   

18.
Synthetic alkyl-lysophospholipids represent a family of promising anticancer drugs that induce apoptosis in a variety of tumor cells. Here we have found a differential subcellular distribution of the alkyl-lysophospholipid edelfosine in leukemic and solid tumor cells that leads to distinct anticancer responses. Edelfosine induced rapid apoptosis in human leukemic cells, including acute T-cell leukemia Jurkat and Peer cells, but promoted a late apoptotic response, preceded by G(2)/M arrest, in human solid tumor cells such as cervix epitheloid carcinoma HeLa cells and lung carcinoma A549 cells. c-Jun amino-terminal kinase (JNK) and caspase-3 were accordingly activated at earlier times in edelfosine-treated Jurkat cells as compared with drug-treated HeLa cells. Both leukemic and solid tumor cells took up this alkyl-lysophospholipid and expressed the two putative edelfosine targets, namely cell surface Fas death receptor (also known as APO-1 or CD95) and endoplasmic reticulum CTP: phosphocholine cytidylyltransferase. However, edelfosine was mainly located to plasma membrane lipid rafts in Jurkat and Peer leukemic cells and to endoplasmic reticulum in solid tumor HeLa and A549 cells. Edelfosine induced translocation of Fas, Fas-associated death domain-containing protein, and JNK into membrane rafts in Jurkat cells, but not in HeLa cells. In contrast, edelfosine inhibited phosphatidylcholine biosynthesis in both HeLa and A549 cells, but not in Jurkat or Peer leukemic cells, before the triggering of apoptosis. These data indicate that edelfosine targets two different subcellular structures in a cell type-dependent manner, namely cell surface lipid rafts in leukemic cells and endoplasmic reticulum in solid tumor cells.  相似文献   

19.
Chemotherapy agents initiate tumour cell apoptosis and this is thought to involve oxidative stress. In this study we have investigated the effect of the important antioxidant Vitamin C (ascorbate) on the response of HL60 and Jurkat cells to three chemotherapy drugs, namely etoposide, melphalan and arsenic trioxide (As2O3). Cells grown in routine culture media are deficient in ascorbate and to determine its effect on chemotherapy drug-induced apoptosis we supplemented the cells prior to drug exposure. We found that ascorbate had a varied effect on apoptosis and cell cycle progression. Etoposide-induced apoptosis in HL60 cells was significantly increased in ascorbate-loaded cells as measured by caspase-3 activation and DNA degradation, and this appeared to reflect a decrease in the number of necrotic cells rather than increased cytotoxicity. In contrast, ascorbate had no effect on etoposide-induced apoptosis in Jurkat cells. In both cell types melphalan-induced apoptosis was unaffected by intracellular ascorbate, whereas both apoptosis and growth arrest with low concentrations of As2O3 were diminished. These results indicate that intracellular ascorbate can affect cell responses to chemotherapy drugs in a complex and somewhat unpredictable manner and that it may play an important role in the responsiveness of tumour cells to chemotherapy regimes. This study was supported by the Health Research Council of New Zealand.  相似文献   

20.
The sesquiterpene parthenolide (PRT) is an active component of Mexican-Indian medicinal plants and also of the common herb of European origin feverfew. PRT is considered to be a specific inhibitor of NF-kappaB. Human leukemic HL-60, Jurkat, and Jurkat IkappaBalphaM cells, the latter expressing a dominant-negative IkappaBalpha and thus having non-functional NF-kappaB, were treated with PRT and activation of caspases, plasma membrane integrity, DNA fragmentation, chromatin condensation (probed by DNA susceptibility to denaturation), and changes in cell morphology were determined. As a positive control for apoptosis cells were treated with topotecan (TPT) and H2O2. At 2-8 microM concentration PRT induced transient cell arrest in G2 and M followed by apoptosis. A narrow range of PRT concentration (2-10 microM) spanned its cytostatic effect, induction of apoptosis and induction of necrosis. In fact, necrotic cells were often seen concurrently with apoptotic cells at the same PRT concentration. Atypical apoptosis was characterized by loss of plasma membrane integrity very shortly after caspases activation. In contrast, a prolonged phase of caspase activation with preserved integrity of plasma membrane was seen during apoptosis induced by TPT or H2O2. Necrosis induced by PRT was also atypical, characterized by rapid rupture of plasma membrane and no increase in DNA susceptibility to denaturation. Using Jurkat cells with inactive NF-kappaB we demonstrate that cell cycle arrest and the mode of cell death induced by PRT were not caused by inhibition of NF-kappaB. The data suggest that regardless of caspase activation PRT targets plasma membrane causing its destruction. A caution, therefore, should be exercised in interpreting data of the experiments in which PRT is used with the intention to specifically prevent activation of NF-kappaB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号