首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Gene》1998,216(1):131-137
The amelogenin genes encode abundant enamel proteins that are required for the development of normal tooth enamel. These genes are active only in enamel-forming ameloblasts within the dental organ of the developing tooth, and are part of a small group of genes that are active on both sex chromosomes. The upstream regions of the bovine X- and Y-chromosomal and the sole murine X-chromosomal amelogenin genes have been cloned and sequenced, and conservation at nearly 60% is found in the 300 bp upstream of exon 1 for the 3 genes. A region of the bovine X-chromosomal gene that has inhibitory activity when assayed by gene transfer into heterologous cells includes motifs that have a silencing activity in other genes, and may be important to the mechanism that represses amelogenin expression in non-ameloblast cells in vivo. A comparison of sequences from three genes has led to the identification of several regions with conserved motifs that are strong candidates for having positive or negative regulatory functions, and these regions can now be tested further for interaction with nuclear proteins, and for their ability to regulate expression in vivo.  相似文献   

2.
 Amelogenins are the most abundant constituent in the enamel matrix of developing teeth. Recent investigations of rodent incisors and molar tooth germs revealed that amelogenins are expressed not only in secretory ameloblasts but also in maturation ameloblasts, although in relatively low levels. In this study, we investigated expression of amelogenin in the maturation stage of porcine tooth germs by in situ hybridization and immunocytochemistry. Amelogenin mRNA was intensely expressed in ameloblasts from the differentiation to the transition stages, but was not detected in maturation stage ameloblasts. C-terminal specific anti-amelogenin antiserum, which only reacts with nascent amelogenin molecules, stained ameloblasts from the differentiation to the transition stages. This antiserum also stained the surface layer of immature enamel at the same stages. At the maturation stage, no immunoreactivity was found within the ameloblasts or the immature enamel. These results indicate that, in porcine tooth germs, maturation ameloblasts do not express amelogenins, suggesting that newly secreted enamel matrix proteins from the maturation ameloblast are not essential to enamel maturation occurring at the maturation stage. Accepted: 14 January 1999  相似文献   

3.
4.
5.
A human X-Y homologous region encodes "amelogenin"   总被引:21,自引:0,他引:21  
Results of cloning and sequencing of genomic sequences from the X and Y chromosomes that encode the tooth enamel gene amelogenin (both AMG and AMGL) are described. Three exons are defined on both the X and Y sequences. The nucleotide sequences reported here offer basic information for investigating human amelogenin.  相似文献   

6.
Amelogenins, the major protein component of the mineralizing enamel extracellular matrix, are critical for normal enamel formation as documented in the linkage studies of a group of inherited disorders, with defective enamel formation, called Amelogenesis imperfecta. Recent cases of Amelogenesis imperfecta include mutations that resulted in truncated amelogenin protein lacking the hydrophilic C-terminal amino acids. Current advances in knowledge on amelogenin structure, nanospheres assembly and their effects on crystal growth have supported the hypothesis that amelogenin nanospheres provide the organized microstructure for the initiation and modulated growth of enamel apatite crystals. In order to evaluate the function of the conserved hydrophilic C-terminal telopeptide during enamel biomineralization, the present study was designed to analyze the self-assembly and apatite binding behavior of amelogenin proteins and their isoforms lacking the hydrophilic C-terminal. We applied dynamic light scattering to investigate the size distribution of amelogenin nanospheres formed by a series of native and recombinant proteins. In addition, the apatite binding properties of these amelogenins were examined using commercially available hydroxyapatite crystals. Amelogenins lacking the carboxy-terminal (native P161 and recombinant rM166) formed larger nanospheres than those formed by their full-length precursors: native P173 and recombinant rM179. These data suggest that after removal of the hydrophilic carboxy-terminal segment further association of the nanospheres takes place through hydrophobic interactions. The affinity of amelogenins lacking the carboxy-terminal regions to apatite crystals was significantly lower than their parent amelogenins. These structure-functional analyses suggest that the hydrophilic carboxy-terminal plays critical functional roles in mineralization of enamel and that the lack of this segment causes abnormal mineralization.  相似文献   

7.
Amelogenins, major components of developing enamel, are predominantly involved in the formation of tooth enamel. Although amelogenins are also implicated in cementogenesis, their precise spatial expression pattern and molecular role are not clearly understood. Here, we report for the first time the expression of two alternate splice forms of amelogenins, M180 and the leucine-rich amelogenin peptide (LRAP), in the periodontal region of mouse tooth roots. Lack of M180 and LRAP mRNA expression correlated with cementum defects observed in the amelogenin-null mice. The cementum defects were characterized by an increased presence of multinucleated cells, osteoclasts, and cementicles. These defects were associated with an increased expression of the receptor activator of the nuclear factor-kappa B ligand (RANKL), a critical regulator of osteoclastogenesis. These findings indicate that the amelogenin splice variants, M180 and LRAP, are critical in preventing abnormal resorption of cementum.  相似文献   

8.
Amelogenins are an intrinsically disordered protein family that plays a major role in the development of tooth enamel, one of the most highly mineralized materials in nature. Monomeric porcine amelogenin possesses random coil and residual secondary structures, but it is not known which sequence regions would be conformationally attractive to potential enamel matrix targets such as other amelogenins (self-assembly), other matrix proteins, cell surfaces, or biominerals. To address this further, we investigated recombinant porcine amelogenin (rP172) using "solvent engineering" techniques to simultaneously promote native-like structure and induce amelogenin oligomerization in a manner that allows identification of intermolecular contacts between amelogenin molecules. We discovered that in the presence of 2,2,2-trifluoroethanol (TFE) significant folding transitions and stabilization occurred primarily within the N- and C-termini, while the polyproline Type II central domain was largely resistant to conformational transitions. Seven Pro residues (P2, P127, P130, P139, P154, P157, P162) exhibited conformational response to TFE, and this indicates these Pro residues act as folding enhancers in rP172. The remaining Pro residues resisted TFE perturbations and thus act as conformational stabilizers. We also noted that TFE induced rP172 self-association via the formation of intermolecular contacts involving P4-H6, V19-P33, and E40-T58 regions of the N-terminus. Collectively, these results confirm that the N- and C-termini of amelogenin are conformationally responsive and represent potential interactive sites for amelogenin-target interactions during enamel matrix mineralization. Conversely, the Pro, Gln central domain is resistant to folding and this may have important functional significance for amelogenin.  相似文献   

9.
Amelogenin is the most abundant matrix protein in enamel. Proper amelogenin processing by proteinases is necessary for its biological functions during amelogenesis. Matrix metalloproteinase 9 (MMP-9) is responsible for the turnover of matrix components. The relationship between MMP-9 and amelogenin during tooth development remains unknown. We tested the hypothesis that MMP-9 binds to amelogenin and they are co-expressed in ameloblasts during amelogenesis. We evaluated the distribution of both proteins in the mouse teeth using immunohistochemistry and confocal microscopy. At postnatal day 2, the spatial distribution of amelogenin and MMP-9 was co-localized in preameloblasts, secretory ameloblasts, enamel matrix and odontoblasts. At the late stages of mouse tooth development, expression patterns of amelogenin and MMP-9 were similar to that seen in postnatal day 2. Their co-expression was further confirmed by RT-PCR, Western blot and enzymatic zymography analyses in enamel organ epithelial and odontoblast-like cells. Immunoprecipitation assay revealed that MMP-9 binds to amelogenin. The MMP-9 cleavage sites in amelogenin proteins across species were found using bio-informative software program. Analyses of these data suggest that MMP-9 may be involved in controlling amelogenin processing and enamel formation.  相似文献   

10.
Ribozymes are small RNA structures capable of cleaving RNA target molecules in a catalytic fashion. Designed ribozymes can be targeted to specific mRNAs, blocking their expression without affecting normal functions of other genes. Because of their specific and catalytic mode of action ribozymes are ideal agents for therapeutic interventions against malfunctioning or foreign gene products. Here we report successful experiments to 'knock out' a major translation product in vivo using synthesized, chemically modified ribozymes. The ribozymes, designed to cleave amelogenin mRNA, were injected close to developing mandibular molar teeth in newborn mice, resulting in a prolonged and specific arrest of amelogenin synthesis not caused by general toxicity. No carriers were required to assist cellular uptake. Amelogenins are highly conserved tissue-specific proteins that play a central role in mammalian enamel biomineralization. Ultrastructural analyses of in vivo ribozyme-treated teeth demonstrated their failure to develop normally mineralized enamel. These results demonstrate that synthesized ribozymes can be highly effective in achieving both timed and localized 'knock-out' of important gene products in vivo, and suggest new possibilities for suppression of gene expression for research and therapeutic purposes.  相似文献   

11.
Enamelysin is a tooth-specific matrix metalloproteinase that is expressed during the early through middle stages of enamel development. The enamel matrix proteins amelogenin, ameloblastin, and enamelin are also expressed during this same approximate developmental time period, suggesting that enamelysin may play a role in their hydrolysis. In support of this interpretation, recombinant enamelysin was previously demonstrated to cleave recombinant amelogenin at virtually all of the precise sites known to occur in vivo. Thus, enamelysin is likely an important amelogenin-processing enzyme. To characterize the in vivo biological role of enamelysin during tooth development, we generated an enamelysin-deficient mouse by gene targeting. Although mice heterozygous for the mutation have no apparent phenotype, the enamelysin null mouse has a severe and profound tooth phenotype. Specifically, the null mouse does not process amelogenin properly, possesses an altered enamel matrix and rod pattern, has hypoplastic enamel that delaminates from the dentin, and has a deteriorating enamel organ morphology as development progresses. Our findings demonstrate that enamelysin activity is essential for proper enamel development.  相似文献   

12.
Amelogenin-deficient mice display an amelogenesis imperfecta phenotype.   总被引:8,自引:0,他引:8  
Dental enamel is the hardest tissue in the body and cannot be replaced or repaired, because the enamel secreting cells are lost at tooth eruption. X-linked amelogenesis imperfecta (MIM 301200), a phenotypically diverse hereditary disorder affecting enamel development, is caused by deletions or point mutations in the human X-chromosomal amelogenin gene. Although the precise functions of the amelogenin proteins in enamel formation are not well defined, these proteins constitute 90% of the enamel organic matrix. We have disrupted the amelogenin locus to generate amelogenin null mice, which display distinctly abnormal teeth as early as 2 weeks of age with chalky-white discoloration. Microradiography revealed broken tips of incisors and molars and scanning electron microscopy analysis indicated disorganized hypoplastic enamel. The amelogenin null phenotype reveals that the amelogenins are apparently not required for initiation of mineral crystal formation but rather for the organization of crystal pattern and regulation of enamel thickness. These null mice will be useful for understanding the functions of amelogenin proteins during enamel formation and for developing therapeutic approaches for treating this developmental defect that affects the enamel.  相似文献   

13.
14.
Tooth development is a complex process including successive stages of initiation, morphogenesis, and histogenesis. The role of the Dlx family of homeobox genes during the early stages of tooth development has been widely analyzed, while little data has been reported on their role in dental histogenesis. The expression pattern of Dlx2 has been described in the mouse incisor; an inverse linear relationship exists between the level of Dlx2 expression and enamel thickness, suggesting a role for Dlx2 in regulation of ameloblast differentiation and activity. In vitro data have revealed that DLX homeoproteins are able to regulate the expression of matrix proteins such as osteocalcin. The aim of the present study was to analyze the expression and function of Dlx genes during amelogenesis. Analysis of Dlx2/LacZ transgenic reporter mice, Dlx2 and Dlx1/Dlx2 null mutant mice, identified spatial variations in Dlx2 expression within molar tooth germs and suggests a role for Dlx2 in the organization of preameloblastic cells as a palisade in the labial region of molars. Later, during the secretory and maturation stages of amelogenesis, the expression pattern in molars was found to be similar to that described in incisors. The expression patterns of the other Dlx genes were examined in incisors and compared to Dlx2. Within the ameloblasts Dlx3 and Dlx6 are expressed constantly throughout presecretory, secretory, and maturation stages; during the secretory phase when Dlx2 is transitorily switched off, Dlx1 expression is upregulated. These data suggest a role for DLX homeoproteins in the morphological control of enamel. Sequence analysis of the amelogenin gene promoter revealed five potential responsive elements for DLX proteins that are shown to be functional for DLX2. Regulation of amelogenin in ameloblasts may be one method by which DLX homeoproteins may control enamel formation. To conclude, this study establishes supplementary functions of Dlx family members during tooth development: the participation in establishment of dental epithelial functional organization and the control of enamel morphogenesis via regulation of amelogenin expression.  相似文献   

15.
Amelogenins are hydrophobic, proline-rich proteins that are the primary biosynthetic products of ameloblasts. These cells are responsible for the formation of tooth enamel, and amelogenins play an important role in the process of biomineralization. A cDNA, corresponding to the mouse 26-kDa amelogenin, has been molecularly cloned and sequenced. Southern blot analysis of genomic DNA from the mouse using this cDNA as a probe indicates that there is only one mouse amelogenin (Amel) gene. This paper describes restriction site variation for the Amel gene that we have identified between C57BL/6 and M. spretus and the segregation of that variation as an X-chromosome gene. The position of the amelogenin locus (Amel) relative to the loci for alpha-galactosidase (Ags), proteolipoprotein (Plp), and the random genomic probe DXWas31 has been determined. Amel is established as: (1) the most distal locus in the genetic map of the mouse X chromosome, (2) lying proximal to the X:Y pairing region, and (3) being restricted to the mouse X chromosome.  相似文献   

16.
Ameloblasts synthesize and secrete the enamel matrix proteins (amelogenin, ameloblastin, and enamelin). This investigation examined the profiles of ameloblastin in the ameloblasts and in the enamel matrix during different postnatal (PN) days (days 0-9) of development of mouse molar, using an antibody specific for C-terminal sequence of ameloblastin (Ct; GNKVHQPQVHNAWRF). Ameloblastin is found in three different molecular sizes (37, 55, and 66 kDa) in both ameloblasts and enamel matrix during PN development. In the ameloblasts, the sequence of expression of these fractions varied. The 37-kDa fraction was observed (even before the appearances of mRNA of the proteases, enamelysin and kallikrein-4) on days 0 and 1, persisted until day 3, and was not found thereafter. Other isoforms (55 and 66 kDa) distinctly appeared in ameloblasts after day 1, reached a peak on day 5, and remained thereafter. The Ct-positive granules appeared beaded in the ameloblasts on day 3. In the extracellular matrix, a 37-kDa (but not 66- or 55-kDa) fraction was detected on days 0 and 1 and remained in the matrix throughout the PN days. The larger isoforms (55 and 66 kDa) appeared in the enamel matrix from day 3 onward. On days 0-3, but not later, the 37-kDa isoform co-localizes with amelogenin in Tomes' process and formative enamel, as revealed by laser scan confocal microscopy. Autoradiography confirmed accumulation of 3H-labeled amelogenin trityrosyl motif peptide in the region of Tomes' process and formative enamel from day 0 to 3. These observations suggest that the 37-kDa isoform interacts with amelogenin during early tooth development.  相似文献   

17.
18.
Amelogenins represent the major component of the organic matrix of enamel, and consist of several intact and degraded forms. A precise knowledge of their respective distributions throughout the enamel layer could provide some insight into their functions. To date, no antibody exists that can selectively detect the secretory forms of amelogenin. In this study we used the chicken egg yolk system to generate an antibody to recombinant mouse amelogenin. Immunoblots of whole homogenates from rat incisor enamel organs and enamel showed that the resulting antibody (M179y) recognized proteins corresponding to the five known secretory forms of rat amelogenin. Immunogold cytochemistry demonstrated that reactivity was restricted to ameloblasts and enamel. Secretory forms of amelogenin persisted in significant amounts throughout the enamel layer. The density of labeling was highest over the surface portion of the enamel layer, but enamel growth sites in this region showed a localized paucity of gold particles. Immunoreactivity was lowest over the mid-portion of the layer and increased moderately near the dentino-enamel junction. These results indicate that intact forms of amelogenin probably have a more complex distribution in the enamel layer than was heretofore suspected.  相似文献   

19.
As the principal components of the developing tooth enamel matrix, amelogenins play a significant role in tooth enamel formation and organization. In order to elucidate the structure and function of amelogenins in the evolution of enamel, we have selected the Iguana iguana as a squamate model organism. Here we report the first complete squamate amelogenin sequence available as of yet and document unique features of Iguana amelogenins and enamel. Transmission electron microscopy documented randomly oriented Iguana enamel crystals during the elongation phase compared with organized enamel crystal patterns at comparable stages in mammals. Sequencing of PCR amplified products revealed a full-length I. iguana amelogenin cDNA containing 877 nucleotides with a 564 nucleotide coding sequence encoding 187 amino acids. The homologies of the newly discovered I. iguana amelogenin amino acid sequence with the published mouse, caiman (Palaeosuchus), and snake (Elaphe) amelogenin were 41.3%, 53.5%, and 55.5%, respectively. On Western blots one major protein with a molecular weight of 24 kDa, and two minor proteins with molecular weights of 28 and 13.5 kDa, respectively, were detected based on the cross-reactivity of antisera against recombinant Rana pipiens amelogenin proteins. Sequence analysis revealed a moderate sequence homology between mammalian and reptilian amelogenin genes. A significant alteration was the deletion of the hydrophilic GSP sequence from exon 3 in the mouse sequence resulting in a conversion to a hydrophobic region in Iguana. Together, these findings identified a novel amelogenin cDNA sequence in the squamate reptilian I. iguana and functional implications for the evolution of amelogenins and enamel in squamates.  相似文献   

20.
Heterogeneity of amelogenin mRNA in the bovine tooth germ   总被引:1,自引:0,他引:1  
The amelogenins are a complex mixture of hydrophobic proteins that are the major organic component of developing enamel. To study the molecular mechanisms underlying the heterogeneity of the amelogenins we isolated cDNA clones encoding these proteins. The clones were definitively identified by hybrid-selected translation experiments and by comparison of the DNA sequence with the protein-derived amino acid sequence. Southern hybridization of bovine genomic DNA indicated that amelogenin is a single copy gene. However, Northern hybridization experiments distinctly showed two major species of mRNA, each of which were sufficiently large enough to encode the highest known molecular weight species of amelogenin proteins. Furthermore, immunoprecipitation of hybrid-selected translation products using isolated amelogenin cDNA showed multiple, translated protein products. These data are supportive of a differential mRNA processing mechanism involved in generating a heterogeneous family of amelogenin matrix proteins from a single gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号