共查询到20条相似文献,搜索用时 15 毫秒
1.
de Morais Guedes S Vitorino R Domingues R Tomer K Correia AJ Amado F Domingues P 《Biochemical and biophysical research communications》2005,328(1):106-115
In the last decade, the fruit fly Drosophila melanogaster has emerged as a promising invertebrate model for the investigation of innate immunity, in part because of its well characterised genetics. The information provided by the innumerous reports on Drosophila's immune response indicates that a large number of genes, in addition to the well-known antimicrobial peptide genes, are both up- and down-regulated upon immune challenge. Nevertheless, their contribution to fighting off infection has not been seriously addressed. With the application of recent advances in proteomics, the effects of an immune challenge in the overall modification of Drosophila 2-DE protein patterns were investigated. The aim of this study was to investigate hemolymph proteins differentially expressed between control and immunised larvae sets, which could be related solely to the Drosophila immune response. The list of immune-related protein spots included heat shock proteins and other proteins with chaperone properties, serine proteases, phenol oxidase, and Drosophila antioxidant system components, which accounted for 21% of the total of 70 identified proteins, metabolic enzymes implicated in pathways such as cellular respiration, fatty-acid oxidation, protein biosynthesis, and structural proteins. 相似文献
2.
Drosophila melanogaster larval hemolymph protein mapping 总被引:5,自引:0,他引:5
Guedes Sde M Vitorino R Tomer K Domingues MR Correia AJ Amado F Domingues P 《Biochemical and biophysical research communications》2003,312(3):545-554
With the completion of the genome sequence of Drosophila melanogaster the importance of constructing a proteome map is to be considered. Therefore, with the application of recent advances in proteomic analysis approaches, a protein map of D. melanogaster larvae hemolymph proteins was obtained using 2-DE in the range of pH 3-10. After Coomassie colloidal detection of 289 spots, a total of 105 were excised from the gel and digested with trypsin. Identification was done based on a combination of MALDI-TOF/TOF MS and MS/MS spectra. The 99 proteins identified using this approach include a large number of metabolic enzymes, translational apparatus components, and structural proteins. Among these we emphasize the identification of proteins with molecular chaperone properties (heat shock proteins and PPIases) and protein spots involved in defense responses such as antioxidant and immunological defense mechanisms (thioredoxin, prophenoloxidase, and serine proteases), as well as in signal transduction pathways. 相似文献
3.
We examined the association between body mass and metabolic rate in Drosophila melanogaster under a variety of conditions. These included comparisons of body mass and metabolic rate in flies from different laboratory lines measured at different ages, over different metabolic sampling periods, and comparisons using wet versus dry mass data. In addition, the relationship between body mass and metabolic rate was determined for flies recently collected from wild populations. In no case was there a significant correlation between body mass and metabolic rate. These results indicate that care must be taken when attempting to account for the effects of body mass on metabolic rate. Expressing such data in mass-specific units may be an inappropriate method of attempting to control for the effects of differences in body mass. 相似文献
4.
Age-related changes in carbonylation of mitochondrial proteins were determined in mitochondria from the flight muscles of Drosophila melanogaster. Reactivity with antibodies against (i) adducts of dinitrophenyl hydrazone (DNP), commonly assumed to react broadly with derivatized carbonyl groups, (ii) malondialdehyde (MDA), or (iii) hydroxynonenal (HNE), was compared at five different ages of flies. MDA and HNE are carbonyl-containing products of lipid peroxidation, which can form covalent adducts with proteins. Specific objectives were to address the following inter-related issues: (1) what are the sources of adducts involved in protein carbonylation in mitochondria during aging; (2) is carbonylation by different adducts detectable solely by the DNP antibodies, as assumed widely; (3) can the adducts formed by lipid peroxidation products in vivo, be used as markers for monitoring age-associated changes in oxidative damage to proteins. The total amounts of immunoreactive proteins, detected by all three antibodies, were found to increase with age; however, the immunodensity of individual reactive bands and the magnitude of the increases were variable, and unrelated to the relative abundance of a protein. While some protein bands were strongly immunopositive for all three antibodies, others were quite selective. The amounts of high molecular weight cross-linked proteins (>200kDa) increased with age. In general, the anti-HNE antibody reacted with more protein bands compared to the anti-MDA or -DNP antibody. The results suggest that sources of the carbonyl-containing protein adducts vary and no single antibody reacts with all of them. Overall, the results indicate that HNE shows robust age-associated increases in adductation with mitochondrial proteins, and is a good marker for monitoring protein oxidative damage during aging. 相似文献
5.
Mutagenesis provides a powerful way of isolating genetic and physiological processes underlying complex traits, but this approach has rarely been applied to investigating water balance in insects. Here, we describe the isolation of a desiccation-resistant mutant of Drosophila melanogaster. Mutagenesis of a desiccation sensitive line resulted in the isolation of a mutant with two-fold higher resistance. The mutant was partially dominant and mapped to the second chromosome. Mutant flies showed lower rates of water loss, and had a higher water content, but showed no change in body mass, glycogen content, hemolymph volume or water content tolerated at death from desiccation. These physiological differences are contrasted to changes in lines of D. melanogaster mass selected for altered stress resistance. Isolation of this mutant provides an opportunity to identify a gene involved in water balance in insects. 相似文献
6.
7.
Insect endosymbionts often influence host nutrition but these effects have not been comprehensively investigated in Wolbachia endosymbionts that are widespread in insects. Using strains of Drosophila melanogaster with the wMel Wolbachia infection, we showed that Wolbachia did not influence adult starvation resistance. Wolbachia also had no effect on larval development time or the size of emerging adults from a low nutrition medium. While Wolbachia may influence the expression of heat shock proteins, we found that there was no effect on adult heat resistance when tested in terms of survival or virility following heat stress. The absence of nutrition or stress effects suggests that other processes maintain wMel frequencies in natural populations of Drosophila melanogaster. 相似文献
8.
Significant progress has been made in our understanding of the neurogenetics of circadian clocks in fruit flies Drosophila melanogaster. Several pacemaker neurons and clock genes have now been identified and their roles in the cellular and molecular clockwork established. Some recent findings suggest that the basic architecture of the clock is multi-oscillatory; the clock mechanisms in the ventral lateral neurons (LN(v)s) of the fly brain govern locomotor activity and adult emergence rhythms, while the peripheral oscillators located in antennal cells regulate olfactory rhythm. Among circadian phenomena exhibited by Drosophila, the egg-laying rhythm is unique in many ways: (i) this rhythm persists under constant light (LL), while locomotor activity and adult emergence become arrhythmic, (ii) its circadian periodicity is much longer than 24h, and (iii) while egg-laying is rhythmic under constant darkness, the expression of two core clock genes period (per) and timeless (tim), is non-oscillatory in the ovaries. In this paper, we review our current knowledge of the circadian regulation of egg-laying behavior in Drosophila, and provide some possible explanations for its self-sustained nature. We conclude by discussing the existing limitations in our understanding of the regulatory mechanisms and propose few approaches to address them. 相似文献
9.
Salzberg A Fisher O Siman-Tov R Ankri S 《Biochemical and biophysical research communications》2004,322(2):465-469
The genome of Drosophila melanogaster contains methylated cytosines. Recent studies indicate that DNA methylation in the fruit fly depends on one DNA methyltransferase, dDNMT2. No obvious phenotype is associated with the downregulation of this DNA methyltransferase. Thus, identifying the target sequences methylated by dDNMT2 may constitute the first step towards understanding the biological functions of this enzyme. We used anti-5-methylcytosine antibodies as affinity column to identify the methylated sequences in the genome of adult flies. Our analysis demonstrates that components of retrotransposons and repetitive DNA sequences are putative substrates for dDNMT2. The methylation status of DNA encoding Gag, a protein involved in delivering the transposition template to its DNA target, was confirmed by sodium bisulfite sequencing. 相似文献
10.
Verleyen P Baggerman G D'Hertog W Vierstraete E Husson SJ Schoofs L 《Journal of insect physiology》2006,52(4):379-388
Antimicrobial peptides (AMPs) play an important role in the innate immunity of insects. In Drosophila 17 additional immune induced molecules (DIMs) were found in the haemolymph of adult flies upon septic injury. Previous studies using MALDI mass spectrometry combined with Edman degradation, detected AMPs and DIMs of a predominantly large size. By means of 2D-nanoLC ESI MS/MS, 43 DIMs were identified in this study from the haemolymph of Drosophila third instar larvae 12h after challenge with a mixture of Micrococcus luteus and Escherichia coli. Most peptides were derived from known AMP or DIM precursors, but only four peptides were purified and identified before. The majority of the peptides that we detected were smaller in size. Interestingly, two previously unknown peptide precursors were found and hereby related to immune defense. These include CG7738 and CG32185. Many of the identified peptides are post-translationally modified by an N-terminal pyroglutamic acid and/or a C-terminal amide. Haemolymph of control larvae was treated in the same way and revealed only one peptide. 相似文献
11.
完整基因结构的预测是当前生命科学研究的一个重要基础课题,其中一个关键环节是剪接位点和各种可变剪接事件的精确识别.基于转录组测序(RNA-seq)数据,识别剪接位点和可变剪接事件是近几年随着新一代测序技术发展起来的新技术策略和方法.本工作基于黑腹果蝇睾丸RNA-seq数据,使用TopHat软件成功识别出39718个果蝇剪接位点,其中有10584个新剪接位点.同时,基于剪接位点的不同组合,针对各类型可变剪接特征开发出计算识别算法,成功识别了8477个可变剪接事件(其中新识别的可变剪接事件3922个),包括可变供体位点、可变受体位点、内含子保留和外显子缺失4种类型.RT-PCR实验验证了2个果蝇基因上新识别的可变剪接事件,发现了全新的剪接异构体.进一步表明,RNA-seq数据可有效应用于识别剪接位点和可变剪接事件,为深入揭示剪接机制及可变剪接生物学功能提供新思路和新手段. 相似文献
12.
It remains a central problem in population genetics to infer the past action of natural selection, and these inferences pose a challenge because demographic events will also substantially affect patterns of polymorphism and divergence. Thus it is imperative to explicitly model the underlying demographic history of the population whenever making inferences about natural selection. In light of the considerable interest in adaptation in African populations of Drosophila melanogaster, which are considered ancestral to the species, we generated a large polymorphism data set representing 2.1 Mb from each of 20 individuals from a Ugandan population of D. melanogaster. In contrast to previous inferences of a simple population expansion in eastern Africa, our demographic modeling of this ancestral population reveals a strong signature of a population bottleneck followed by population expansion, which has significant implications for future demographic modeling of derived populations of this species. Taking this more complex underlying demographic history into account, we also estimate a mean X-linked region-wide rate of adaptation of 6 × 10−11/site/generation and a mean selection coefficient of beneficial mutations of 0.0009. These inferences regarding the rate and strength of selection are largely consistent with most other estimates from D. melanogaster and indicate a relatively high rate of adaptation driven by weakly beneficial mutations. 相似文献
13.
Paul David Shirk Paul Alfred Roberts Chee Hark Harn 《Development genes and evolution》1988,197(2):66-74
Summary The late larvae of Drosophila gibberosa Patterson and Mainland choose different pupariation sites than the larvae of Drosophila melanogaster Meigen. Since the larvae of D. gibberosa do not attach themselves to the substratum, the salivary glands contain only a small amount of the glue proteins before pupariation. Proteins comprising the salivary gland secretions of late larvae of these two species were compared and found to be qualitatively quite different. Only five polypeptides with the same molecular masses were identified in both species. The rate of protein synthesis in the salivary glands of D. gibberosa continued to increase through the late larval stage and pupariation. As a consequence, the total amount of protein contained in the salivary glands also continued to increase after pupariation. To demonstrate temporal changes in protein synthesis from 48 h before pupariation to 28 h after pupariation, newly synthesized polypeptides were pulse labeled by culturing salivary glands in vitro. The patterns of polypeptide synthesis fell into four major groups depending upon whether the synthesis of a protein stopped shortly after pupariation, stopped during late pupariation, increased at pupariation, or was initiated after pupariation. Changing patterns of protein synthesis are correlated with the known changes in gene puffing during this developmental period. 相似文献
14.
15.
Three of the major protein species present in the hemolymph of Drosophila melanogaster larvae just prior to pupation are absent from second instar larvae but accumulate rapidly during the third instar. This article describes the purification and characterization of one of these, larval serum protein (LSP) 2, using an immunological assay. It is a homohexamer of molecular weight about 450,000, with a polypeptide molecular weight of 78,000–83,000. Fast and slow electrophoretic variants of this protein map between the markers vin and gs, at 36–37 on chromosome 3.This work was partially supported by M.R.C. Research Studentships to J.W. and M.E.A. 相似文献
16.
Thioredoxins (Trx) participate in essential antioxidant and redox-regulatory processes via a pair of conserved cysteine residues. In dipteran insects like Drosophila and Anopheles, which lack a genuine glutathione reductase (GR), thioredoxins fuel the glutathione system with reducing equivalents. Thus, characterizing Trxs from these organisms contributes to our understanding of redox control in GR-free systems and provides information on novel targets for insect control. Cytosolic Trx of Drosophila melanogaster (DmTrx) is the first thioredoxin that was crystallized for X-ray diffraction analysis in the reduced and in the oxidized form. Comparison of the resulting structures shows rearrangements in the active-site regions. Formation of the C32-C35 disulfide bridge leads to a rotation of the side-chain of C32 away from C35 in the reduced form. This is similar to the situation in human Trx and Trx m from spinach chloroplasts but differs from Escherichia coli Trx, where it is C35 that moves upon change of the redox state. In all four crystal forms that were analysed, DmTrx molecules are engaged in a non-covalent dimer interaction. However, as demonstrated by gel-filtration analyses, DmTrx does not dimerize under quasi in vivo conditions and there is no redox control of a putative monomer/dimer equilibrium. The dimer dissociation constants K(d) were found to be 2.2mM for reduced DmTrx and above 10mM for oxidized DmTrx as well as for the protein in the presence of reduced glutathione. In human Trx, oxidative dimerization has been demonstrated in vitro. Therefore, this finding may indicate a difference in redox control of GR-free and GR-containing organisms. 相似文献
17.
Despite its importance as a model organism very little is known about the interaction between Drosophila and its microsporidian pathogens. Here we report on the relative susceptibility of Drosophila melanogaster life history stages to infection by Tubulinosema kingi, and on patterns of pathogen proliferation. We find that only larvae can be infected, and that this susceptibility decreases with larval age. Following infection, the pathogen shows little subsequent proliferation in larvae, a limited amount in pupae while it replicates greatly in adults. We present evidence that the host launches a cellular immune response after infection with the pathogen, although its effectiveness remains to be demonstrated. 相似文献
18.
Homologous recombination affects myriad aspects of genome evolution, from standing levels of nucleotide diversity to the efficacy of natural selection. Rates of crossing over show marked variability at all scales surveyed, including species-, population-, and individual-level differences. Even within genomes, crossovers are nonrandomly distributed in a wide diversity of taxa. Although intra- and intergenomic heterogeneities in crossover distribution have been documented in Drosophila, the scale and degree of crossover rate heterogeneity remain unclear. In addition, the genetic features mediating this heterogeneity are unknown. Here we quantify fine-scale heterogeneity in crossover distribution in a 2.1-Mb region of the Drosophila melanogaster X chromosome by localizing crossover breakpoints in 2500 individuals, each containing a single crossover in this specific X chromosome region. We show 90-fold variation in rates of crossing over at a 5-kb scale, place this variation in the context of several aspects of genome evolution, and identify several genetic features associated with crossover rates. Our results shed new light on the scale and magnitude of crossover rate heterogeneity in D. melanogaster and highlight potential features mediating this heterogeneity. 相似文献
19.
The impact of parasitism by Asobara tabida on Drosophila melanogaster larval development, survival features and larval activity has been investigated using two strains of the parasitoid. The successful parasitism rate of the A1 strain was four times greater than that of the WOPV strain. Both strains induced equivalent mortality rates but hosts parasitized by A1 predominantly died as pupae. The time necessary for the host pupariation and emergence, and the larval weight at 72, 96 and 120 h post-parasitization were measured. Parasitized larvae exhibited longer periods of development and lower weights than controls, especially when parasitized by A1. These results suggest that hosts underwent physiological costs varying with respect to the outcome of the parasitic relationship. Of the parasitoid factors possibly responsible for these costs, we examined venoms for their impact on host mortality. Artificial injections of WOPV venoms induced higher mortality rates than did A1 venoms. Venoms were also found responsible for the induction of a transient paralysis, naturally occuring after parasitization. Again, the strongest effect was observed after parasitization by WOPV or injections of its venoms. This study gives new insights into the intriguing features of A. tabida and constitutes the first report of the paralysing properties of the venoms. 相似文献
20.
The Drosophila melanogaster ventral nerve cord derives from neural progenitor cells called neuroblasts. Individual neuroblasts have unique gene expression profiles and give rise to distinct clones of neurons and glia. The specification of neuroblast identity provides a cell intrinsic mechanism which ultimately results in the generation of progeny which are different from each other. Segment polarity genes have a dual function in early neurogenesis: within distinct regions of the neuroectoderm, they are required both for neuroblast formation and for the specification of neuroblast identity. Previous studies of segment polarity gene function largely focused on neuroblasts that arise within the posterior part of the segment. Here we show that the segment polarity gene midline is required for neuroblast formation in the anterior-most part of the segment. Moreover, midline contributes to the specification of anterior neuroblast identity by negatively regulating the expression of Wingless and positively regulating the expression of Mirror. In the posterior-most part of the segment, midline and its paralog, H15, have partially redundant functions in the regulation of the NB marker Eagle. Hence, the segment polarity genes midline and H15 play an important role in the development of the ventral nerve cord in the anterior- and posterior-most part of the segment. 相似文献