首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
J. R. Erickson  M. Johnston 《Genetics》1994,136(4):1271-1278
We selected and analyzed extragenic suppressors of mutations in four genes-GRR1, REG1, GAL82 and GAL83-required for glucose repression of the GAL genes in the yeast Saccharomyces cerevisiae. The suppressors restore normal or nearly normal glucose repression of GAL1 expression in these glucose repression mutants. Tests of the ability of each suppressor to cross-suppress mutations in the other glucose repression genes revealed two groups of mutually cross-suppressed genes: (1) REG1, GAL82 and GAL83 and (2) GRR1. Mutations of a single gene, SRG1, were found as suppressors of reg1, GAL83-2000 and GAL82-1, suggesting that these three gene products act at a similar point in the glucose repression pathway. Mutations in SRG1 do not cross-suppress grr1 or hxk2 mutations. Conversely, suppressors of grr1 (rgt1) do not cross-suppress any other glucose repression mutation tested. These results, together with what was previously known about these genes, lead us to propose a model for glucose repression in which Grr1p acts early in the glucose repression pathway, perhaps affecting the generation of the signal for glucose repression. We suggest that Reg1p, Gal82p and Gal83p act after the step(s) executed by Grr1p, possibly transmitting the signal for repression to the Snf1p protein kinase.  相似文献   

7.
8.
Protein phosphatase type 1, encoded by GLC7 in Saccharomyces cerevisiae, is an essential serine/threonine phosphatase implicated in the regulation of a diverse array of physiological functions. We constructed and examined 20 mutant alleles of GLC7 in which codons encoding clusters of charged residues were changed to alanine codons. Three of 20 mutant alleles alter residues in the active site of the phosphatase and are unable to rescue the lethality of a glc7::LEU2 disruption. The 17 alleles that support growth confer a range of mutant traits including cell cycle arrest, 2-deoxyglucose resistance, altered levels of glycogen, sensitivity to high salt, and sporulation defects. For some traits, such as 2-deoxyglucose resistance and cell cycle arrest, the mutated residues map to specific regions of the protein whereas the mutated residues in glycogen-deficient mutants and sporulation-defective mutants are more widely distributed over the protein surface. Many mutants have complex phenotypes, each displaying a diverse range of defects. The wide range of phenotypes identified from the collection of mutant alleles is consistent with the hypothesis that Glc7p-binding proteins, which are thought to regulate the specificity of Glc7p, have overlapping binding sites on the surface of Glc7p. This could account for the high level of sequence conservation found among type 1 protein phosphatases from different species.  相似文献   

9.
10.
In the yeast, Saccharomyces cerevisiae, several genes appear to act early in meiotic recombination. HOP1 and RED1 have been classified as such early genes. The data in this paper demonstrate that neither a red1 nor a hop1 mutation can rescue the inviable spores produced by a rad52 spo13 strain; this phenotype helps to distinguish these two genes from other early meiotic recombination genes such as SPO11, REC104, or MEI4. In contrast, either a red1 or a hop1 mutation can rescue a rad50S spo13 strain; this phenotype is similar to that conferred by mutations in the other early recombination genes (e.g., REC104). These two different results can be explained because the data presented here indicate that a rad50S mutation does not diminish meiotic intrachromosomal recombination, similar to the mutant phenotypes conferred by red1 or hop1. Of course, RED1 and HOP1 do act in the normal meiotic interchromosomal recombination pathway; they reduce interchromosomal recombination to ~10% of normal levels. We demonstrate that a mutation in a gene (REC104) required for initiation of exchange is completely epistatic to a mutation in RED1. Finally, mutations in either HOP1 or RED1 reduce the number of double-strand breaks observed at the HIS2 meiotic recombination hotspot.  相似文献   

11.
Nonsense Mutations in Essential Genes of Saccharomyces Cerevisiae   总被引:7,自引:2,他引:5       下载免费PDF全文
L. Riles  M. V. Olson 《Genetics》1988,118(4):601-607
A new method for isolating nonsense mutations in essential yeast genes has been used to develop a collection of 115 ochre mutations that define 94 complementation groups. The mutants are isolated in a genetic background that includes an ochre suppressor on a metastable plasmid and a suppressible colony-color marker on a chromosome. When the parental strain is plated on a rich medium, the colonies display a pattern of red, plasmid-free sectors on a white background. Mutants containing an ochre mutation in any essential yeast gene give rise to nonsectoring, white colonies, since cell growth is dependent on the presence of the plasmid-borne suppressor. Analysis of the data suggests that mutations are being recovered from a pool of approximately 250 genes.  相似文献   

12.
C. Mondesert  D. J. Clarke    S. I. Reed 《Genetics》1997,147(2):421-434
The regulation of secretion polarity and cell surface growth during the cell cycle is critical for proper morphogenesis and viability of Saccharomyces cerevisiae. A shift from isotropic cell surface growth to polarized growth is necessary for bud emergence and a repolarization of secretion to the bud neck is necessary for cell separation. Although alterations in the actin cytoskeleton have been implicated in these changes in secretion polarity, clearly other cellular systems involved in secretion are likely to be targets of cell cycle regulation. To investigate mechanisms coupling cell cycle progression to changes in secretion polarity in parallel with and downstream of regulation of actin polarization, we implemented a screen for mutants defective specifically in polarized growth but with normal actin cytoskeleton structure. These mutants fell into three classes: those partially defective in N-glycosylation, those linked to specific defects in the exocyst, and a third class neither defective in glycosylation nor linked to the exocyst. These results raise the possibility that changes in N-linked glycosylation may be involved in a signal linking cell cycle progression and secretion polarity and that the exocyst may have regulatory functions in coupling the secretory machinery to the polarized actin cytoskeleton.  相似文献   

13.
Mutations that cause loss of acidity in the vacuole (lysosome) of Saccharomyces cerevisiae were identified by screening colonies labeled with the fluorescent, pH-sensitive, vacuolar labeling agent, 6-carboxyfluorescein. Thirty nine vacuolar pH (Vph-) mutants were identified. Four of these contained mutant alleles of the previously described PEP3, PEP5, PEP6 and PEP7 genes. The remaining mutants defined eight complementation groups of vph mutations. No alleles of the VAT2 or TFP1 genes (known to encode subunits of the vacuolar H(+)-ATPase) were identified in the Vph- screen. Strains bearing mutations in any of six of the VPH genes failed to grow on medium buffered at neutral pH; otherwise, none of the vph mutations caused notable growth inhibition on standard yeast media. Expression of the vacuolar protease, carboxypeptidase Y, was defective in strains bearing vph4 mutations but was apparently normal in strains bearing any of the other vph mutations. Defects in vacuolar morphology at the light microscope level were evident in all Vph- mutants. Strains that contained representative mutant alleles of the 17 previously described PEP genes were assayed for vacuolar pH; mutations in seven of the PEP genes (including PEP3, PEP5, PEP6 and PEP7) caused loss of vacuolar acidity.  相似文献   

14.
In the yeast, Saccharomyces cerevisiae, the synthesis of the essential phospholipid phosphatidylethanolamine (PE) is accomplished by a network of reactions which comprises four different pathways. The enzyme contributing most to PE formation is the mitochondrial phosphatidylserine decarboxylase 1 (Psd1p) which catalyzes conversion of phosphatidylserine (PS) to PE. To study the genome wide effect of an unbalanced cellular and mitochondrial PE level and in particular the contribution of Psd1p to this depletion we performed a DNA microarray analysis with a ∆psd1 deletion mutant. This approach revealed that 54 yeast genes were significantly up-regulated in the absence of PSD1 compared to wild type. Surprisingly, marked down-regulation of genes was not observed. A number of different cellular processes in different subcellular compartments were affected in a ∆psd1 mutant. Deletion mutants bearing defects in all 54 candidate genes, respectively, were analyzed for their growth phenotype and their phospholipid profile. Only three mutants, namely ∆gpm2, ∆gph1 and ∆rsb1, were affected in one of these parameters. The possible link of these mutations to PE deficiency and PSD1 deletion is discussed.  相似文献   

15.
16.
The Spt10 and Spt21 Genes of Saccharomyces Cerevisiae   总被引:2,自引:1,他引:1       下载免费PDF全文
G. Natsoulis  F. Winston    J. D. Boeke 《Genetics》1994,136(1):93-105
  相似文献   

17.
L. P. Wakem  F. Sherman 《Genetics》1990,124(3):515-522
Approximately 290 omnipotent suppressors, which enhance translational misreading, were isolated in strains of the yeast Saccharomyces cerevisiae containing the psi+ extrachromosomal determinant. The suppressors could be assigned to 8 classes by their pattern of suppression of five nutritional markers. The suppressors were further distinguished by differences in growth on paromomycin medium, hypertonic medium, low temperatures (10 degrees), nonfermentable carbon sources, alpha-aminoadipic acid medium, and by their dominance and recessiveness. Genetic analysis of 12 representative suppressors resulted in the assignment of these suppressors to 6 different loci, including the three previously described loci SUP35 (chromosome IV), SUP45 (chromosome II) and SUP46 (chromosome II), as well as three new loci SUP42 (chromosome IV), SUP43 (chromosome XV) and SUP44 (chromosome VII). Suppressors belonging to the same locus had a wide range of different phenotypes. Differences between alleles of the same locus and similarities between alleles of different loci suggest that the omnipotent suppressors encode proteins that effect different functions and that altered forms of each of the proteins can effect the same function.  相似文献   

18.
19.
Q. Q. Fan  F. Xu  M. A. White    T. D. Petes 《Genetics》1997,145(3):661-670
In a wild-type strain of Saccharomyces cerevisiae, a hotspot for meiotic recombination is located upstream of the HIS4 gene. An insertion of a 49-bp telomeric sequence into the coding region of HIS4 strongly stimulates meiotic recombination and the local formation of meiosis-specific double-strand DNA breaks (DSBs). When strains are constructed in which both hotspots are heterozygous, hotspot activity is substantially less when the hotspots are on the same chromosome than when they are on opposite chromosomes.  相似文献   

20.
T. D. Petes  P. W. Greenwell    M. Dominska 《Genetics》1997,146(2):491-498
We examined the effect of a single variant repeat on the stability of a 51-base pair (bp) microsatellite (poly GT). We found that the insertion stabilizes the microsatellite about fivefold in wild-type strains. The stabilizing effect of the variant base was also observed in strains with mutations in the DNA mismatch repair genes pms1, msh2 and msh3, indicating that this effect does not require a functional DNA mismatch repair system. Most of the microsatellite alterations in the pms1, msh2 and msh3 strains were additions or deletions of single GT repeats, but about half of the alterations in the wild-type and msh6 strains were large (>8 bp) deletions or additions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号