首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Nicotinamide mononucleotide adenylyltransferase (NMNAT) catalyzes the formation of NAD by means of nucleophilic attack by 5'-phosphoryl of NMN on the α-phosphoryl group of ATP. Humans possess three NMNAT isozymes (NMNAT1, NMNAT2, and NMNAT3) that differ in size and sequence, gene expression pattern, subcellular localization, oligomeric state and catalytic properties. Of these, NMNAT2, the least abundant isozyme, is the only one whose much-needed crystal structure has not been solved as yet. To fill this gap, we used the crystal structures of human NMNAT1 and NMNAT3 as templates for homology-based structural modeling of NMNAT2, and the resulting raw structure was then refined by molecular dynamics simulations in a water box to obtain a model of the final folded structure. We investigated the importance of NMNAT2's central domain, which we postulated to be dispensable for catalytic activity, instead representing an isozyme-specific control domain within the overall architecture of NMNAT2. Indeed, we experimentally confirmed that removal of different-length fragments from this central domain did not compromise the enzyme's catalytic activity or the overall tridimensional structure of the active site.  相似文献   

2.
NAD is a vital redox carrier, and its degradation is a key element of important regulatory pathways. NAD-mediated functions are compartmentalized and have to be fueled by specific biosynthetic routes. However, little is known about the different pathways, their subcellular distribution, and regulation in human cells. In particular, the route(s) to generate mitochondrial NAD, the largest subcellular pool, is still unknown. To visualize organellar NAD changes in cells, we targeted poly(ADP-ribose) polymerase activity into the mitochondrial matrix. This activity synthesized immunodetectable poly(ADP-ribose) depending on mitochondrial NAD availability. Based on this novel detector system, detailed subcellular enzyme localizations, and pharmacological inhibitors, we identified extracellular NAD precursors, their cytosolic conversions, and the pathway of mitochondrial NAD generation. Our results demonstrate that, besides nicotinamide and nicotinic acid, only the corresponding nucleosides readily enter the cells. Nucleotides (e.g. NAD and NMN) undergo extracellular degradation resulting in the formation of permeable precursors. These precursors can all be converted to cytosolic and mitochondrial NAD. For mitochondrial NAD synthesis, precursors are converted to NMN in the cytosol. When taken up into the organelles, NMN (together with ATP) serves as substrate of NMNAT3 to form NAD. NMNAT3 was conclusively localized to the mitochondrial matrix and is the only known enzyme of NAD synthesis residing within these organelles. We thus present a comprehensive dissection of mammalian NAD biosynthesis, the groundwork to understand regulation of NAD-mediated processes, and the organismal homeostasis of this fundamental molecule.  相似文献   

3.
While mammals and fungi possess nicotinate/nicotinamide mononucleotide adenyltransferase (NMNAT) isoforms, Arabidopsis thaliana only contains a single NMNAT gene, AtNMNAT (At5g55810). We analyzed the enzymatic activity of the AtNMNAT-encoded protein to determine the role of AtNMNAT in plant development. AtNMNAT catalyzed the synthesis of nicotinate adenine dinucleotide (NaAD) from nicotinate mononucleotide (NaMN) in the Preiss-Handler-dependent pathway, and of nicotinamide adenine dinucleotide (NAD) from nicotiamide mononucleotide (NMN) in the Preiss-Handler-independent pathway. Prominent AtNMNAT expression was detected in the male gametophyte. Moreover, AtNMNAT expression was spatio-temporally regulated during microspore development and pollen tube growth. Disruption of the AtNMNAT gene (atnmnat mutant) was characterized by a decrease in NAD content in pollen. Cytological examinations revealed that the atnmnat mutant was gametophytically impaired in in vivo and in vitro pollen tube growth. Our results suggest that metabolic fulfillment via the NAD pathway is indispensable for normal pollen growth and subsequent normal seed production.  相似文献   

4.
Nicotinamide mononucleotide adenylyl transferase (NMNAT) is an essential enzyme in all organisms, because it catalyzes a key step of NAD synthesis. However, little is known about the structure and regulation of this enzyme. In this study we established the primary structure of human NMNAT. The human sequence represents the first report of the primary structure of this enzyme for an organism higher than yeast. The enzyme was purified from human placenta and internal peptide sequences determined. Analysis of human DNA sequence data then permitted the cloning of a cDNA encoding this enzyme. Recombinant NMNAT exhibited catalytic properties similar to the originally purified enzyme. Human NMNAT (molecular weight 31932) consists of 279 amino acids and exhibits substantial structural differences to the enzymes from lower organisms. A putative nuclear localization signal was confirmed by immunofluorescence studies. NMNAT strongly inhibited recombinant human poly(ADP-ribose) polymerase 1, however, NMNAT was not modified by poly(ADP-ribose). NMNAT appears to be a substrate of nuclear kinases and contains at least three potential phosphorylation sites. Endogenous and recombinant NMNAT were phosphorylated in nuclear extracts in the presence of [gamma-(32)P]ATP. We propose that NMNAT's activity or interaction with nuclear proteins are likely to be modulated by phosphorylation.  相似文献   

5.
Nicotinamide/nicotinate mononucleotide (NMN/ NaMN)adenylyltransferase (NMNAT) is an indispensable enzyme in the biosynthesis of NAD(+) and NADP(+). Human NMNAT displays unique dual substrate specificity toward both NMN and NaMN, thus flexible in participating in both de novo and salvage pathways of NAD synthesis. Human NMNAT also catalyzes the rate-limiting step of the metabolic conversion of the anticancer agent tiazofurin to its active form tiazofurin adenine dinucleotide (TAD). The tiazofurin resistance is mainly associated with the low NMNAT activity in the cell. We have solved the crystal structures of human NMNAT in complex with NAD, deamido-NAD, and a non-hydrolyzable TAD analogue beta-CH(2)-TAD. These complex structures delineate the broad substrate specificity of the enzyme toward both NMN and NaMN and reveal the structural mechanism for adenylation of tiazofurin nucleotide. The crystal structure of human NMNAT also shows that it forms a barrel-like hexamer with the predicted nuclear localization signal sequence located on the outside surface of the barrel, supporting its functional role of interacting with the nuclear transporting proteins. The results from the analytical ultracentrifugation studies are consistent with the formation of a hexamer in solution under certain conditions.  相似文献   

6.
7.
8.
The enzyme nicotinamide mononucleotide adenylyltransferase is an ubiquitous enzyme catalyzing an essential step in NAD (NADP) biosynthetic pathway. In human cells, the nuclear enzyme, which we will now call NMNAT-1, has been the only known enzyme of this type for over 10 years. Here we describe the cloning and expression of a human cDNA encoding a novel 34.4kDa protein, that shares significant homology with the 31.9kDa NMNAT-1. We propose to call this enzyme NMNAT-2. Purified recombinant NMNAT-2 is endowed with NMN and nicotinic acid mononucleotide adenylyltransferase activities, but differs from NMNAT-1 with regard to chromosomal and cellular localization, tissue-specificity of expression, and molecular properties, supporting the idea that the two enzymes might play distinct physiological roles in NAD homeostasis.  相似文献   

9.
Several important signaling pathways require NAD as substrate, thereby leading to significant consumption of the molecule. Because NAD is also an essential redox carrier, its continuous resynthesis is vital. In higher eukaryotes, maintenance of compartmentalized NAD pools is critical, but so far rather little is known about the regulation and subcellular distribution of NAD biosynthetic enzymes. The key step in NAD biosynthesis is the formation of the dinucleotide by nicotinamide/nicotinic acid mononucleotide adenylyltransferases (NMNATs). The three human isoforms were localized to the nucleus, the Golgi complex, and mitochondria. Here, we show that their genes contain unique exons that encode isoform-specific domains to mediate subcellular targeting and post-translational modifications. These domains are dispensable for catalytic activity, consistent with their absence from NMNATs of lower organisms. We further demonstrate that the Golgi-associated NMNAT is palmitoylated at two adjacent cysteine residues of its isoform-specific domain and thereby anchored at the cytoplasmic surface, a potential mechanism to regulate the cytosolic NAD pool. Insertion of unique domains thus provides a yet unrecognized enzyme targeting mode, which has also been adapted to modulate subcellular NAD supply.  相似文献   

10.

Background

Pyridine nucleotides are essential for electron transport and serve as co-factors in multiple metabolic processes in all organisms. Each nucleotide has a particular role in metabolism. For instance, the NAD/NADP ratio is believed to be responsible for sustaining the functional status of plant cells. However, since enzymes involved in the synthesis and degradation of NAD and NADP have not been fully identified, the physiological functions of these co-enzymes in plant growth and development are largely unknown.

Scope

This Botanical Briefing covers progress in the developmental and stress-related roles of genes associated with NAD biosynthesis in plants. Special attention will be given to assessments of physiological impacts through the modulation of NAD and NADP biosynthesis.

Conclusions

The significance of NAD biosynthesis in plant development and NADP biosynthesis in plant stress tolerance is summarized in this Briefing. Further investigation of cells expressing a set of NAD biosynthetic genes would facilitate understanding of regulatory mechanisms by which plant cells maintain NAD homeostasis.Key words: NAD biosynthesis, nicotinate/nicotinamide mononucleotide adenylyltransferase (NMNAT), chloroplastic NADP biosynthesis, NAD kinase 2 (NADK2)  相似文献   

11.
NAD plays essential redox and non-redox roles in cell biology. In mammals, its de novo and recycling biosynthetic pathways encompass two independent branches, the “amidated” and “deamidated” routes. Here we focused on the indispensable enzymes gating these two routes, i.e. nicotinamide mononucleotide adenylyltransferase (NMNAT), which in mammals comprises three distinct isozymes, and NAD synthetase (NADS). First, we measured the in vitro activity of the enzymes, and the levels of all their substrates and products in a number of tissues from the C57BL/6 mouse. Second, from these data, we derived in vivo estimates of enzymes''rates and quantitative contributions to NAD homeostasis. The NMNAT activity, mainly represented by nuclear NMNAT1, appears to be high and nonrate-limiting in all examined tissues, except in blood. The NADS activity, however, appears rate-limiting in lung and skeletal muscle, where its undetectable levels parallel a relative accumulation of the enzyme''s substrate NaAD (nicotinic acid adenine dinucleotide). In all tissues, the amidated NAD route was predominant, displaying highest rates in liver and kidney, and lowest in blood. In contrast, the minor deamidated route showed higher relative proportions in blood and small intestine, and higher absolute values in liver and small intestine. Such results provide the first comprehensive picture of the balance of the two alternative NAD biosynthetic routes in different mammalian tissues under physiological conditions. This fills a gap in the current knowledge of NAD biosynthesis, and provides a crucial information for the study of NAD metabolism and its role in disease.  相似文献   

12.
Di Martino C  Pallotta ML 《Planta》2011,234(4):657-670
Current studies in plants suggest that the content of the coenzyme NAD is variable and potentially important in determining cell fate. In cases that implicate NAD consumption, re-synthesis must occur to maintain dinucleotide pools. Despite information on the pathways involved in NAD synthesis in plants, the existence of a mitochondrial nicotinamide mononucleotide adenylyltransferase (NMNAT) activity which catalyses NAD synthesis from nicotinamide mononucleotide (NMN) and ATP has not been reported. To verify the latter assumed pathway, experiments with purified and bioenergetically active mitochondria prepared from tubers of Jerusalem artichoke (Helianthus tuberosus L.) were performed. To determine whether NAD biosynthesis might occur, NMN was added to Jerusalem artichoke mitochondria (JAM) and NAD biosynthesis was tested by means of HPLC and spectroscopically. Our results indicate that JAM contain a specific NMNAT inhibited by Na-pyrophosphate, AMP and ADP-ribose. The dependence of NAD synthesis rate on NMN concentration shows saturation kinetics with K m and V max values of 82 ± 1.05 μM and 4.20 ± 0.20 nmol min−1 mg−1 protein, respectively. The enzyme’s pH and temperature dependence were also investigated. Fractionation studies revealed that mitochondrial NMNAT activity was present in the soluble matrix fraction. The NAD pool needed constant replenishment that might be modulated by environmental inputs. Thus, the mitochondrion in heterotrophic plant tissues ensures NAD biosynthesis by NMNAT activity and helps to orchestrate NAD metabolic network in implementing the survival strategy of cells.  相似文献   

13.
Initial-rate and product inhibition studies revealed distinctive ordered ternary complex kinetic mechanisms, substrate specificities, and metal ion preferences for the three isozymes of human nicotinamide mononucleotide adenylyl-transferase (NMNAT, EC 2.7.7.1). ATP binds before NMN with nuclear isozyme NMNAT1 and Golgi apparatus NMNAT2, but the opposite order is observed with the mitochondrial isozyme NMNAT3. Only the latter utilizes ITP efficiently in place of ATP, and while NMNH conversion to NADH by NMNAT1 and NMNAT3 occurs at similar rates, conversion by NMNAT2 is much slower. These isozymes can also be discriminated by their action on tiazofurin monophosphate (TrMP), a metabolite of the antineoplastic prodrug tiazofurin. Our finding that TrMP is only a substrate with NMNAT1 and NMNAT3 reveals for the first time an organelle selectivity in the metabolism of this important drug. In search of additional ways to discriminate these isozymes, we synthesized and tested the P1-(nicotinamide/nicotinate-riboside-5')-Pn-(adenosine-5') dinucleotides Np3AD, Np4AD, and Nap4AD. In addition to being highly effective inhibitors, these multisubstrate geometric inhibitors gave inhibition patterns that are consistent with the aforementioned isozyme differences in substrate binding order. Distinctive differences in their substrate specificity and metal ion selectivity also permitted us to quantify individual isozyme contributions to NAD+ formation in human cell extracts.  相似文献   

14.
The NAD-synthesizing enzyme nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) is a critical survival factor for axons and its constant supply from neuronal cell bodies into axons is required for axon survival in primary culture neurites and axon extension in vivo. Recently, we showed that palmitoylation is necessary to target NMNAT2 to post-Golgi vesicles, thereby influencing its protein turnover and axon protective capacity. Here we find that NMNAT2 is a substrate for cytosolic thioesterases APT1 and APT2 and that palmitoylation/depalmitoylation dynamics are on a time scale similar to its short half-life. Interestingly, however, depalmitoylation does not release NMNAT2 from membranes. The mechanism of palmitoylation-independent membrane attachment appears to be mediated by the same minimal domain required for palmitoylation itself. Furthermore, we identify several zDHHC palmitoyltransferases that influence NMNAT2 palmitoylation and subcellular localization, among which a role for zDHHC17 (HIP14) in neuronal NMNAT2 palmitoylation is best supported by our data. These findings shed light on the enzymatic regulation of NMNAT2 palmitoylation and highlight individual thioesterases and palmitoyltransferases as potential targets to modulate NMNAT2-dependent axon survival.  相似文献   

15.
Nicotinamide mononucleotide adenylyl transferases (NMNATs) are essential neuronal maintenance factors postulated to preserve neuronal function and protect against axonal degeneration in various neurodegenerative disease states. We used in vitro and in vivo approaches to assess the impact of NMNAT2 reduction on cellular and physiological functions induced by treatment with a vinca alkaloid (vincristine) and a taxane-based (paclitaxel) chemotherapeutic agent. NMNAT2 null (NMNAT2-/-) mutant mice die at birth and cannot be used to probe functions of NMNAT2 in adult animals. Nonetheless, primary cortical cultures derived from NMNAT2-/- embryos showed reduced cell viability in response to either vincristine or paclitaxel treatment whereas those derived from NMNAT2 heterozygous (NMNAT2+/-) mice were preferentially sensitive to vincristine-induced degeneration. Adult NMNAT2+/- mice, which survive to adulthood, exhibited a 50% reduction of NMNAT2 protein levels in dorsal root ganglia relative to wildtype (WT) mice with no change in levels of other NMNAT isoforms (NMNAT1 or NMNAT3), NMNAT enzyme activity (i.e. NAD/NADH levels) or microtubule associated protein-2 (MAP2) or neurofilament protein levels. We therefore compared the impact of NMNAT2 knockdown on the development and maintenance of chemotherapy-induced peripheral neuropathy induced by vincristine and paclitaxel treatment using NMNAT2+/- and WT mice. NMNAT2+/- did not differ from WT mice in either the development or maintenance of either mechanical or cold allodynia induced by either vincristine or paclitaxel treatment. Intradermal injection of capsaicin, the pungent ingredient in hot chili peppers, produced equivalent hypersensitivity in NMNAT2+/- and WT mice receiving vehicle in lieu of paclitaxel. Capsaicin-evoked hypersensitivity was enhanced by prior paclitaxel treatment but did not differ in either NMNAT2+/- or WT mice. Thus, capsaicin failed to unmask differences in nociceptive behaviors in either paclitaxel-treated or paclitaxel-untreated NMNAT2+/- and WT mice. Moreover, no differences in motor behavior were detected between genotypes in the rotarod test. Our studies do not preclude the possibility that complete knockout of NMNAT2 in a conditional knockout animal could unmask a role for NMNAT2 in protection against detrimental effects of chemotherapeutic treatment.  相似文献   

16.
The biosynthesis of NAD has been examined in 3T3 cells. The net synthesis of pyridine nucleotides does not occur when cells are cultured in the absence of performed pyridine ring compounds; however, growth continues normally for up to four cell doublings resulting in cells with a total pyridine nucleotide content that is reduced by as much as 12-fold. The mechanism that adjust the relative amounts of NADP and NAD are also altered such that the amount of NADP relative to NAD increases 5-fold. Both nicotinate and nicotinamide can be used as a precursor for NAD biosynthesis, however nicotinate is utilized less efficiently than nicotinamide. The presence of functional pathways for the biosynthesis of NAD from nicotinate via nicotinate mononucleotide and nicotinate adenine dinucleotide and from nicotinamide via nicotinamide mononucleotide has been demonstrated by identification of biosynthetic intermediates following short term exposure of cells to radiolabelled precursors. When cells are grown in Dulbecco's modified Eagle's medium which contains 33 μM nicotinamide the biosynthesis of NAD proceeds by a single pathway with nicotinamide mononucleotide as the only intermediate. Nicotinamide ribonucleoside which previously has been postulated to be an intermediate in the conversion of nicotinamide to NAD is not an intermediate in NAD biosynthesis.  相似文献   

17.
Leber congenital amaurosis 9 (LCA9) is an autosomal recessive retinal degeneration condition caused by mutations in the NAD+ biosynthetic enzyme NMNAT1. This condition leads to early blindness but no other consistent deficits have been reported in patients with NMNAT1 mutations despite its central role in metabolism and ubiquitous expression. To study how these mutations affect NMNAT1 function and ultimately lead to the retinal degeneration phenotype, we performed detailed analysis of LCA-associated NMNAT1 mutants, including the expression, nuclear localization, enzymatic activity, secondary structure, oligomerization, and promotion of axonal and cellular integrity in response to injury. In many assays, most mutants produced results similar to wild type NMNAT1. Indeed, NAD+ synthetic activity is unlikely to be a primary mechanism underlying retinal degeneration as most LCA-associated NMNAT1 mutants had normal enzymatic activity. In contrast, the secondary structure of many NMNAT1 mutants was relatively less stable as they lost enzymatic activity after heat shock, whereas wild type NMNAT1 retains significant activity after this stress. These results suggest that LCA-associated NMNAT1 mutants are more vulnerable to stressful conditions that lead to protein unfolding, a potential contributor to the retinal degeneration observed in this syndrome.  相似文献   

18.
Survivin is an inhibitor of apoptosis protein (IAP) that is markedly overexpressed in most cancers. We identified two novel functionally divergent splice variants, i.e. non-antiapoptotic survivin-2B and antiapoptotic survivin-deltaEx3. Because survivin-2B might be a naturally occurring antagonist of antiapoptotic survivin variants, we analyzed the subcellular distribution of these proteins. PSORT II analysis predicted a preferential cytoplasmic localization of survivin and survivin-2B, but a preferential nuclear localization of survivin-deltaEx3. GFP-tagged survivin variants confirmed the predicted subcellular localization and additionally revealed a cell cycle-dependent nuclear accumulation of survivin-deltaEx3. Moreover, a bipartite nuclear localization signal found exclusively in survivin-deltaEx3 may support cytoplasmic clearance of survivin-deltaEx3. In contrast to the known association between survivin and microtubules or centromeres during mitosis, no corresponding co-localization became evident for survivin-deltaEx3 or survivin-2B. In conclusion, our study provided data on a differential subcellular localization of functionally divergent survivin variants, suggesting that survivin isoforms may perform different functions in distinct subcellular compartments and distinct phases of the cell cycle.  相似文献   

19.
20.
A novel assay procedure has been developed to allow simultaneous activity discrimination in crude tissue extracts of the three known mammalian nicotinamide mononucleotide adenylyltransferase (NMNAT, EC 2.7.7.1) isozymes. These enzymes catalyse the same key reaction for NAD biosynthesis in different cellular compartments. The present method has been optimized for NMNAT isozymes derived from Mus musculus, a species often used as a model for NAD-biosynthesis-related physiology and disorders, such as peripheral neuropathies. Suitable assay conditions were initially assessed by exploiting the metal-ion dependence of each isozyme recombinantly expressed in bacteria, and further tested after mixing them in vitro. The variable contributions of the three individual isozymes to total NAD synthesis in the complex mixture was calculated by measuring reaction rates under three selected assay conditions, generating three linear simultaneous equations that can be solved by a substitution matrix calculation. Final assay validation was achieved in a tissue extract by comparing the activity and expression levels of individual isozymes, considering their distinctive catalytic efficiencies. Furthermore, considering the key role played by NMNAT activity in preserving axon integrity and physiological function, this assay procedure was applied to both liver and brain extracts from wild-type and Wallerian degeneration slow (WldS) mouse. WldS is a spontaneous mutation causing overexpression of NMNAT1 as a fusion protein, which protects injured axons through a gain-of-function. The results validate our method as a reliable determination of the contributions of the three isozymes to cellular NAD synthesis in different organelles and tissues, and in mutant animals such as WldS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号