首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为挖掘广藿香(Pogostemon cablin)内生真菌活性代谢产物,采用多种柱色谱分离方法从广藿香内生真菌Ogataea sp.RW-S10的次级代谢产物中分离得到7个化合物,根据波谱数据分别鉴定为ogataearin (1)、phenylalaninol (2)、对羟基苯乙酮(3)、bis(dethio)bis(methylsulfanyl) gliotoxin (4)、N-苯乙基乙酰胺(5)、lumichrome (6)和dehydroxypaxilline (7),其中化合物1为新化合物。化合物1具有α-葡萄糖苷酶抑制活性,其IC50值为39.38 μmol/L。  相似文献   

2.
A new cathepsin B inhibitor, tokaramide A (1) has been isolated from the marine sponge Theonella aff. mirabilis. Its structure was determined by spectroscopic and chemical methods. Tokaramide A inhibits cathepsin B with an IC50 value of 29.0 ng/mL.  相似文献   

3.
The main byproduct of biodiesel production is glycerol. Here, crude glycerol – byproduct of biodiesel industry – was evaluated as sole carbon source in rhamnolipids production by Pseudomonas aeruginosa. The optimal concentration of crude glycerol and sodium nitrate was assessed using response surface methodology, resulting in about 40–50 mg/L.h of rhamnolipids, which was about four times higher than previously reported in the literature. Fermentation parameters were similar to those observed with commercial glycerol as sole carbon source. The optimized medium was suitable for production using simple (22.9 mg/L.h) and fed-batch (32.4 mg/L.h) fermentation in oxygen-controlled bioreactor without foaming formation. Composition and relative abundance of rhamnolipid congeners showed that crude glycerol had little effect on metabolic pathways involved in their production. CMC values were approximately 130 mg/L and 230–260 mg/L for rhamnolipids from crude and commercial glycerol fermentation, respectively, which were about 2–6 times lower than CMC values of synthetic surfactants.  相似文献   

4.
Butyrate fermentation by immobilized Clostridium tyrobutyricum was successfully carried out in a fibrous bed bioreactor using cane molasses. Batch fermentations were conducted to investigate the influence of pH on the metabolism of the strain, and the results showed that the fermentation gave a highest butyrate production of 26.2 g l−1 with yield of 0.47 g g−1 and reactor productivity up to 4.13 g l−1 h−1 at pH 6.0. When repeated-batch fermentation was carried out, long-term operation with high butyrate yield, volumetric productivity was achieved. Several cane molasses pretreatment techniques were investigated, and it was found that sulfuric acid treatment gave better results regarding butyrate concentration (34.6 ± 0.8 g l−1), yield (0.58 ± 0.01 g g−1), and sugar utilization (90.8 ± 0.9%). Also, fed-batch fermentation from cane molasses pretreated with sulfuric acid was performed to further increase the concentration of butyrate up to 55.2 g l−1.  相似文献   

5.
Kojic acid (KA), produced mainly by Aspergillus species, is a product of fungal secondary metabolism and has great potential in biotechnological applications. The use of KA has steadily increased, chiefly in the pharmaceutical industry, where KA is used for skin lightning. The market for KA has grown considerably in recent years and is expected to reach $39 million by 2026. In this review, we summarise the relevant information regarding the application of KA, describe the optimal cultivation conditions for Aspergillus species used in the production of KA, and assess the prospects for the KA market. Based on our findings, we established that the highest yields of KA can be achieved using submerged fermentation with glucose and yeast extract as the primary sources of carbon and nitrogen, respectively. Furthermore, according to literature, the main species/strains reported as the best producers of KA are Aspergillus flavus (44-L), Aspergillus oryzae (AR-47 and NRRL 484), and Aspergillus terreus (C5-10 mutant of the strain PTCC 5283). Given the commercial importance of KA and the growing demand for this natural product, further studies are needed to identify novel strains of Aspergillus as potential high producers of this acid. Similarly, it will be desirable to identify novel sources of substrate for the low-cost production of KA, thereby promoting its production for use in pharmaceutical, healthcare, and other potential industrial applications. In addition, given the current limited knowledge regarding the biosynthetic pathway of KA, further studies are required to elucidate that biosynthetic pathway.  相似文献   

6.
The increasing global demand for biomass of medicinal plant resources reflects the issues and crisis created by diminishing renewable resources and increasing consumer populations. Moreover, diverse usage of plants and reduced land for cultivation in the world accelerated the deficiency of plant resources. In addition, the preparation of safety of plant based medicine whips up demand for biomass of valuable medicinal plants. As one of alternative approach to upswing the productivity of plant-based pharmaceutical compounds, automation of adventitious root culture system in air-lift bioreactor was adopted to produce cosmic amount of root biomass along with enriched diverse bioactive molecules. In this review, various physiological, engineering parameters, and selection of proper cultivation strategy (fed-batch, two-stage etc.) affecting the biomass production and secondary metabolite accumulation have been discussed. In addition, advances in adventitious root cultures including factors for process scale-up as well as recent research aimed at maximizing automation of the bioreactor production processes are also highlighted. Examples of the scale-up of cultures of adventitious roots of Morinda citrifolia, Echinacea purpurea and angustifolia, Hypericum perforatum and Panax ginseng by applying 20L to 10,000L bioreactors in our lab were demonstrated with a view of commercial application.  相似文献   

7.
Two methoxybrassinin-related stress metabolites, named methoxybrassenins A and B, were isolated from Brassica oleracea var. capitata inoculated with Pseudomonas cichorii. Their structures have been elucidated by spectroscopic and chemical methods. The unusual NMR spectrum of methoxybrassenin B is also discussed in connection with its structure.  相似文献   

8.
9.
The optimisation of gluconic acid fermentation using immobilized Aspergillus niger on a highly porous cellulose support is described. Experimental results showing the effects of variations in oxygen partial pressure, glucose concentration and biomass concentration have been obtained with a continuous recirculation reactor. Levels of dissolved oxygen and glucose concentrations during fermentation significantly affect the production and fermentation time. The optimum biomass requirement on a porous cellulose support has been estimated to be 0.234 mg cm−2 for efficient bioconversion. Increasing the quantum of biomass beyond this value resulted in an overgrown biofilm, which affected productivity adversely. Morphological characteristics of immobilized A. niger have also been investigated.  相似文献   

10.
Cell cultures of Commiphora wightii (Arnott.) Bhandari were grown in shake flasks and a bioreactor and an increase in guggulsterone accumulation up to 18 μg l−1 was recorded in cells grown in the production medium containing a combination of sucrose:glucose (4% total), precursors (phenylalanine, pyruvic acid, xylose, and sodium acetate), morphactin, and 2iP. A yield of 10 g l−1 biomass and ∼200 μg l−1 guggulsterone was recorded in a 3-l flask and in a 2-l stirred tank bioreactor compared with 6.6 g biomass and 67 μg l−1 guggulsterone in 250-ml flasks. Increased vessel size was correlated with increased biomass and guggulsterone accumulation. 2iP alone was not effective for biomass and guggulsterone accumulation in cell cultures of C. wightii.  相似文献   

11.
Structure-similar ginsenosides have different or even totally opposite biological activities, and manipulation of ginsenoside heterogeneity is interesting and significant to biotechnological application. In this work, addition of 1 mM phenobarbital to cell cultures of Panax notoginseng at a relatively high inoculation size of 7.6 g dry cell weight (DW)/L enhanced the production of protopanaxatriol-type (Rg1 + Re) ginsenosides in both shake flask and airlift bioreactor (ALR, 1 L working volume). The content of Rg1 + Re in the ALR was increased from 42.5 ± 4.0 mg per gram DW in untreated cell cultures (control) to 56.4 ± 4.6 mg per gram DW with addition of 1.0 mM phenobarbital. The maximum productivity of Rg1 + Re in the ALR reached 5.66 ± 0.38 mg L−1 d−1, which was almost 3.3-fold that of control. The maximum ratio of the detectable ginsenosides protopanaxatriol:protopanaxadiol (Rb1) was 7.6, which was about twofold that of control. The response of protopanaxadiol 6-hydroxylase (P6H) activity to phenobarbital addition coincided with the above-mentioned change of ginsenoside heterogeneity (distribution). Phenobarbital addition is considered as a useful strategy for manipulating the ginsenoside heterogeneity in bioreactor with enhanced biosynthesis of protopanaxatriol by P. notoginseng cells.  相似文献   

12.
The work evaluated the use of a bioreactor for the enzymatic transesterification of oilseed. Rhizopus oryzae resting-cells, isolated from Foeniculum vulgare Fennel, were used as a biocatalyst. The bioreactor consisted of two glass-jacketed flasks, interconnected by a circuit using isooctane as a solvent, which was recirculated with the help of a peristaltic pump. The system enabled the extraction and hydrolysis of triacylglycerides (TAG), and the subsequent esterification of the free fatty acids formed (FFA). Esterification was carried out by the addition of alcohol using a peristaltic pump. This reactive extraction of vegetable oil was optimized for sunflower seeds using 4-hydroxymethyl-2,2-dimethyl-1,3-dioxolane (solketal) as alcohol. Subsequently, a variety of oil seeds and alcohols were tested. Final ester conversions ranged from 84 to 98% depending on the alcohol and the oilseed used.  相似文献   

13.
Bacillus macerans cyclodextrin glycosyltransferase (CGTase) fused with 10 lysine residues at its C-terminus (CGTK10ase) was immobilized onto a cation exchanger by ionic interaction and used to produce -cyclodextrin (CD) from soluble starch. Poly-lysine fused immobilization increased the Vm of the immobilized CGTase by 40% without a change in Km. The activation energies of thermal deactivation (Ea) were 41.4, 28.1, and 25.9 kcal mol−1, respectively, for soluble wild-type (WT) CGTase, soluble CGTK10ase, and immobilized CGTK10ase, suggesting destabilization of CGTase by poly-lysine fusion and immobilization onto a cation exchanger. Maximum -CD productivity of 539.4 g l−1 h−1 was obtained with 2% soluble starch solution which was constantly fed at a flow rate of 4.0 ml min−1 (D = 240 h−1) in a continuous operation mode of a packed-bed reactor. The operational half-life of the packed-bed enzyme reactor was estimated 12 days at 25 °C and pH 6.0.  相似文献   

14.
15.
M. Akita  Y. Ohta 《Plant cell reports》1998,18(3-4):284-287
We have developed a simple system for mass propagation of plant organs using a bioreactor without forced aeration. In this system, explants were cultured in bottles equipped with an air-permeable membrane on the cap and these bottles were slowly rotated on a bottle roller. Microtubers of potato were induced using a two-step culture method. In the first step, potato plantlets were cultured under static conditions. After shoot proliferation, the culture medium was replaced with a medium containing a higher concentration of sucrose and the bottles were rotated at 1 rpm. The number of tubers was clearly increased in this system compared to the culture without rotation. The results indicated that our system can be applied for mass propagation of potato tubers at low cost. Received: 3 April 1998 / Revision received: 22 July 1998 / Accepted: 21 August 1998  相似文献   

16.
A bioreactor has been designed and developed for partitioning of aqueous and organic phases with a provision for aeration and stirring, a cooling system and a sampling port. The potential of a cow dung microbial consortium has been assessed for bioremediation of phenol in a single-phase bioreactor and a two-phase partitioning bioreactor. The advantages of the two-phase partitioning bioreactor are discussed. The Pseudomonas putida IFO 14671 has been isolated, cultured and identified from the cow dung microbial consortium as a high-potential phenol degrader. The methods developed in this study present an advance in bioremediation techniques for the biodegradation of organic compounds such as phenol using a bioreactor. We have also demonstrated the potential of microorganisms from cow dung as a source of biomass.  相似文献   

17.
Gymnema sylvestre is an important medicinal plant that bears bioactive compound namely gymnemic acids. The present work deals with the optimization of a cell suspension culture system of Gymnema sylvestre for the production of biomass and gymnemic acid, which has anti‐diabetic properties. We investigated the effect of inoculum densities (2.5–20.0 g/L), the strength of the Murashige and Skoog (MS) medium (0.25–2.0), carbon source (sucrose, glucose, fructose, maltose), and the concentration of the sucrose (1–8% w/v) to determine their effects on biomass accumulation and production of gymnemic acid. Overall, 10 g/L of inoculum density, full‐strength MS medium supplemented with 2,4‐dichlorophenoxy acetic acid (2.0 mg/L) and Kinetin (0.1 mg/L), and 3% w/v sucrose was found best for the accumulation of biomass and gymnemic acid content (9.95 mg/g dry weight). The results of the current study will be useful for bioprocess and biochemical engineers for large‐scale production of gymnemic acid in cell culture.  相似文献   

18.
Summary In this study, a perfusion fermentation ofAnchusa officinalis was carried out in a stirred tank bioreactor integrated with an internal cross-flow filter. Bubble-free aeration via microporous membrane fibers was used to provide oxygen. A two-stage culture was successfully conducted in this reactor without filter fouling. In a 17 day fermentation, a cell density of 26 g dw/I and a rosmarinic acid productivity of 94 mg/l day were achieved. This productivity is three times that obtained in a batch culture.  相似文献   

19.
The effects of oxygen supply within the range 20.8–50% (using pure oxygen and air), on cell cultures of Panax ginseng were investigated in a balloon-type bubble bioreactor (5 L capacity, containing 4 L Murashige and Skoog medium, supplemented with 7.0 mg L−1 indolebutyric acid, 0.5 mg L−1 kinetin and 30 g L−1 sucrose). A 40% oxygen supply was found to be optimal for the production of both cell mass and saponin yielding values of 12.8 g (DW) L−1, 4.5 mg (g DW)−1 on day 25, respectively. Low (20.8%, 30%) and high (50%) oxygen concentration supplies were unfavorable to cell growth and saponin accumulation. The results indicate that oxygen supplementation to bioreactor-based ginseng cultures was beneficial for biomass accumulation and saponin production.  相似文献   

20.
Production of lactic acid from paper sludge was studied using thermophilic Bacillus coagulan strains 36D1 and P4-102B. More than 80% of lactic acid yield and more than 87% of cellulose conversion were achieved using both strains without any pH control due to the buffering effect of CaCO3 in paper sludge. The addition of CaCO3 as the buffering reagent in rich medium increased lactic acid yield but had little effect on cellulose conversion; when lean medium was utilized, the addition of CaCO3 had little effect on either cellulose conversion or lactic acid yield. Lowering the fermentation temperature lowered lactic acid yield but increased cellulose conversion. Semi-continuous simultaneous saccharification and co-fermentation (SSCF) using medium containing 100 g/L cellulose equivalent paper sludge without pH control was carried out in serum bottles for up to 1000 h. When rich medium was utilized, the average lactic acid concentrations in steady state for strains 36D1 and P4-102B were 92 g/L and 91.7 g/L, respectively, and lactic acid yields were 77% and 78%. The average lactic acid concentrations produced using semi-continuous SSCF with lean medium were 77.5 g/L and 77.0 g/L for strains 36D1 and P4-102B, respectively, and lactic acid yields were 72% and 75%. The productivities at steady state were 0.96 g/L/h and 0.82 g/L/h for both strains in rich medium and lean medium, respectively. Our data support that B. coagulan strains 36D1 and P4-102B are promising for converting paper sludge to lactic acid via SSCF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号