首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first step of many metabolomics studies is quenching, a technique vital for rapidly halting metabolism and ensuring that the metabolite profile remains unchanging during sample processing. The most widely used approach is to plunge the sample into prechilled cold methanol; however, this led to significant metabolite loss in Synecheococcus sp. PCC 7002. Here we describe our analysis of the impacts of cold methanol quenching on the model marine cyanobacterium Synechococcus sp. PCC 7002, as well as our brief investigation of alternative quenching methods. We tested several methods including cold methanol, cold saline, and two filtration approaches. Targeted central metabolites were extracted and metabolomic profiles were generated using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results indicate that cold methanol quenching induces dramatic metabolite leakage in Synechococcus, resulting in a majority of central metabolites being lost prior to extraction. Alternatively, usage of a chilled saline quenching solution mitigates metabolite leakage and improves sample recovery without sacrificing rapid quenching of cellular metabolism. Finally, we illustrate that metabolite leakage can be assessed, and subsequently accounted for, in order to determine absolute metabolite pool sizes; however, our results show that metabolite leakage is inconsistent across various metabolite pools and therefore must be determined for each individually measured metabolite.  相似文献   

2.
A direct cell quenching method for cell-culture based metabolomics   总被引:1,自引:0,他引:1  
A crucial step in metabolomic analysis of cellular extracts is the cell quenching process. The conventional method first uses trypsin to detach cells from their growth surface. This inevitably changes the profile of cellular metabolites since the detachment of cells from the extracellular matrix alters their physiology. This conventional method also includes time consuming wash/centrifuge steps after trypsinization, but prior to quenching cell activity. During this time, a considerable portion of intracellular metabolites are lost, rendering the conventional method less than ideal for application to metabolomics. We report here a novel sample preparation method for metabolomics applications using adherent mammalian cells, which eliminates the time consumption and physiological stress of the trypsinization and wash/centrifuge steps. This new method was evaluated in the study of metabolic changes caused by 17α-ethynylestradiol (EE2) in estrogen receptor (ER)-positive MCF-7 and ER-negative MDA-MB-231 human breast cancer cell lines using NMR spectroscopy. The results demonstrated that our direct cell quenching method is rapid, effective, and exhibits greater metabolite retention, providing an increase of approximately a factor of 50 compared to the conventional method.  相似文献   

3.
4.
Growth of Saccharomyces cerevisiae on non-fermentable medium was more sensitive to inhibition by vanadate than growth of fermentable medium. The frequency of petite mutants increased in cultures grown for 18 hours in fermentable medium containing vanadate. However, oxygen uptake markedly increased in yeast cultures grown in the presence of vanadate, a similar effect being produced by phosphate. It was also found that oligomycin toxicity was relieved by vanadate. These results suggest that vanadate may interact with the mitochondria of S. cerevisiae.  相似文献   

5.
The aim of this study was to analyze the functional importance of the C-terminus of the essential yeast ribosomal protein L5 (YrpL5). Previous studies have indicated that the C-terminal region of YrpL5 forms an alpha-helix with a positively charged surface that is involved in protein-5S rRNA interaction. Formation of an YrpL5.5S rRNA complex is a prerequisite for nuclear import of YrpL5. Here we have tested the importance of the alpha-helix and the positively charged surface for YrpL5 function in Saccharomyces cerevisiae using site directed mutagenesis in combination with functional complementation. Alterations in the sequence forming the putative alpha-helix affected the functional capacity of YrpL5. However, the effect did not correlate with a decreased ability of the protein to bind to 5S rRNA as all rpL5 mutants tested were imported to the nucleus whether or not the alpha-helix or the positively charged surface were intact. The alterations introduced in the C-terminal sequence affected the growth rate of cells expressing mutant but functional forms of YrpL5. The reduced growth rate was correlated with a reduced ribosomal content per cell indicating that the alterations introduced in the C-terminus interfered with ribosome assembly.  相似文献   

6.
Effect of low-temperature fermentation on yeast nitrogen metabolism   总被引:1,自引:0,他引:1  
The aim of this study was to analyse the influence of low-temperature wine fermentation on nitrogen consumption and nitrogen regulation. Synthetic grape must was fermented at 25 and 13°C. Low-temperature decreased both the fermentation and the growth rates. Yeast cells growing at low-temperature consumed less nitrogen than at 25°C. Specifically, cells at 13°C consumed less ammonium and glutamine, and more tryptophan. Low-temperature seemed to relax the nitrogen catabolite repression (NCR) as deduced from the gene expression of ammonium and amino acid permeases (MEP2 and GAP1) and the uptake of some amino acids subjected to NCR (i.e. arginine and glutamine). Low-temperature influences the quantity and the quality of yeast nitrogen requirements. Nitrogen-deficient grape musts and low temperature are two of the main prevalent causes of sluggish fermentations and, therefore, the effects of both growth conditions on yeast metabolism are of considerable interest for wine making.  相似文献   

7.
8.
Summary The intracellular accumulation of ethanol in yeast and its potential effects on growth and fermentation have been topics of controversy for the past several years. The determination of intracellular ethanol based on the exclusion of [14C]sorbitol to estimate aqueous cell volume was used to examine the question of intracellular ethanol accumulation. An intracellular accumulation of ethanol inSaccharomyces cerevisiae was observed during the early stages of fermentation. However, as fermentation continued, the intracellular and extracellular concentrations of ethanol became similar. Increasing the osmotic pressure of the medium with glucose or sorbitol was observed to cause an increase in the intracellular ethanol concentration. Associated with this was a decrease in yeast growth and fermentation rates. In addition, increasing the osmotic pressure of the medium was observed to cause an increase in glycerol production. Supplementation of the media with excess peptone, yeast extract, magnesium sulfate and potassium phosphate was found to relieve the detrimental effects of high osmotic pressure. Under these conditions, though, no effect on the intracellular and extracellular ethanol distribution was observed. These results indicate that nutrient limitation, and not necessarily intracellular ethanol accumulation, plays a key role during yeast fermentations in media of high osmolarity.  相似文献   

9.
丁亚丽 《生物资源》2022,(5):476-483
为了进一步探究传统藏药植物多刺绿绒蒿(Meconopsis horridula)中代谢物成分以及不同器官差异情况,采用UPLC-MS技术对多刺绿绒蒿的叶、根和花三个不同器官代谢物进行分析与鉴定。并利用主成分分析(PCA)、聚类热图分析、正交偏最小二乘-判别分析(OPLS-DA)和KEGG通路富集分析等方法进行不同器官差异代谢产物筛选与通路分析。结果显示,在ESI+和ESI-模式下,共检测注释到947种代谢物,不同器官间差异代谢物进行分析,叶和根差异代谢物有301个,叶和花中差异代谢物有170个,根和花中差异代谢物有244个。通过聚类热图可以看出,大多数代谢物在根中含量较低;KEGG通路富集分析显示,差异代谢物大多富集在氨基酸代谢、花青素生物合成、黄酮类生物合成和生物碱合成等代谢途径。各器官优势黄酮类、萜类和生物碱类代谢物的分析为进一步探究多刺绿绒蒿的不同器官药用特征成分和开发利用提供一定的帮助。  相似文献   

10.
Generally, natural isolates of high ethanol producingSaccharomyces cerevisiae obtained by screening are used in alcoholic industries. The methods involved in their isolation and identification are elaborate. Antigenic analysis using antibodies raised against wholeSaccharomyces cells indicated species specificity of cell wall surface thermostable antigens. By affinity purification, the specific antibodies could be obtained and used for specific isolation ofS. cerevisiae. Antigenic studies using antibodies raised against isolated cell walls of fermentatively grownS. cerevisiae indicated the occurrence of thermolabile antigens common toSaccharomyces species. Higher concentrations of these antigens could be detected in thoseS. cerevisiae that had the ability for high ethanol production. The concentrations of these cell wall common antigens increased with increasing culture age and ethanol accumulation in culture broths. In younger yeast cells, the concentration could be increased by growing the cells in a medium containing added ethanol. Using dilutions of cross absorbed antibody specific for common antigens and Ouchterlony test, high ethanol producingS. cerevisiae could be identified.  相似文献   

11.
We have reconstituted the Apaf-1-activated apoptosis mechanism in Sacchromyces cerevisiae such that the presence of a constitutively active form of Apaf-1 together with both Caspase-9 and Caspase-3 results in yeast death. This system is a good model of the Apaf-1-activated pathway in mammalian cells: MIHA (XIAP/hILP), and to a lesser degree MIHB (c-IAP1/HIAP2) and MIHC (c-IAP-2/HIAP1) can inhibit caspases in this system, and protection by IAPs (inhibitor of apoptosis) can be abrogated by coexpression of the Drosophila pro-apoptotic proteins HID and GRIM or the mammalian protein DIABLO/Smac. Using this system we demonstrate that unlike DIABLO/Smac, other proteins which interact with mammalian IAPs (TAB-1, Zap-1, Traf-1 and Traf-2) do not act to antagonise IAP- mediated caspase inhibition.  相似文献   

12.
Although microbial metabolome analysis has now become a widely used method, no generally applicable quenching method has been published so far. Either the methods were established for only one defined organism or the metabolite coverage was quite low. In the current work, a novel, reliable, and robust quenching method for different types of organisms is described. Compared with the commonly used quenching procedure with 60% methanol (−50 °C), we obtained improved results for three examined organisms with different cell wall and membrane structures using a 40% ethanol/0.8% sodium chloride solution (−20 °C). Increased metabolite levels were achieved for 60-80% of all identified compounds. Moreover, the estimated standard error of the relative concentrations of 120-160 different substances was only 14 ± 4% compared with 17 ± 3% in unquenched samples and 24 ± 7% in samples quenched with methanol for the different tested organisms.  相似文献   

13.
【目的】O-琥珀酰-L-高丝氨酸(O-succinyL-L-homoserine, OSH)是合成L-蛋氨酸、L-草铵膦等重要前体,在医药、农药、食品等领域具有重要的应用前景,其绿色高效制造受到广泛关注。本研究通过解析OSH发酵过程代谢途径和代谢产物变化规律,建立OSH发酵调控策略,提升其产量和糖酸转化率。【方法】运用代谢组学技术,系统考察OSH生产菌在发酵不同时间段的代谢物变化情况,探究与OSH合成显著关联的代谢途径,通过在不同时间外源添加关键代谢物,平衡关键代谢物及其前体通量,减少旁路途径对前体的竞争性利用。【结果】在5 L发酵罐中产量达70.1 g/L,糖酸转化率达0.52 g/g (葡萄糖)。【结论】研究结果表明,基于代谢组学分析技术的OSH发酵体系优化和发酵过程调控显著提升了目标产物生产效率,奠定了OSH的产业化基础。  相似文献   

14.
15.
The BGL1 gene, encoding β-glucosidase in Saccharomycopsis fibuligera, was intracellular, secreted or cell-wall associated expressed in an industrial strain of Saccharomyces cerevisiae. The obtained recombinant strains were studied under aerobic and anaerobic conditions. The results indicated that both the wild type and recombinant strain expressing intracellular β-glucosidase cannot grow in medium using cellobiose as sole carbon source. As for the recombinant EB1 expressing secreted enzyme and WB1 expressing cell-wall associated enzyme, the maximum specific growth rates (μmax) could reach 0.03 and 0.05 h−1 under anaerobic conditions, respectively. Meanwhile, the surface-engineered S. cerevisiae utilized 5.2 g cellobiose L−1 and produced 2.3 g ethanol L−1 in 48 h, while S. cerevisiae secreting β-glucosidase into culture broth used 3.6 g cellobiose L−1 and produced 1.5 g ethanol L−1 over the same period, but no-full depletion of cellobiose were observed for both the used recombinant strains. The results suggest that S. cerevisiae used in industrial ethanol production is deficient in cellobiose transporter. However, when β-glucoside permease and β-glucosidase were co-expressed in this strain, it could uptake cellobiose and showed higher growth rate (0.11 h−1) on cellobiose.  相似文献   

16.
An ecological study of Saccharomyces cerevisiae strains in spontaneous alcoholic fermentation has been made in the same winery on two consecutive years (1993 and 1994) with Merlot type musts, and with Malbec type must on a third year (1998). Saccharomyces cerevisiae strains associated with winery surfaces were also analysed. Differential killer sensitivity patterns related to a killer reference panel of 10 killer yeasts belonging to nine species of four genera were used as a quick and simple procedure to discriminate between indigenous S. cerevisiae isolates at the strain level. Although a great diversity of wild strains was observed, two main indigenous S. cerevisiae strains, designated as S. cerevisiae 9 and S. cerevisiae 13, took over the Merlot type fermentation in both years. These strains also appeared in Malbec must fermentation during the year 1998 and they were again found on the winery surface the next year. These results show that some few and stable indigenous S. cerevisiae strains remained in the environmental winery over the considered period of time (1993–1999) and they represent an additional evidence of the taking over of musts by local strains of S. cerevisiae.  相似文献   

17.
The advantage of using 13C-labelled glucose in metabolic studies is that it is an important carbon and energy source for almost all biotechnologically and medically important organisms. On the other hand, the disadvantage is its relatively high cost in the labelling experiments. Looking for cheaper alternatives we found that 13C-[2] acetate or 13C-[1,2] acetate is a prospective compound for such experiments. Acetate is well incorporated by many organisms, including mammalian and insect cell cultures as preferred source of acetyl-CoA. Our experimental results using 13C NMR demonstrated that acetate was efficiently incorporated into glutamate and alanine secreted by the insect cell culture. Using D-stat culture of Saccharomyces uvarum on glucose/13C-acetate mineral media we demonstrated that the labelling patterns of proteinogenic amino acids can be well predicted on the basis of specific substrate consumption rates using the modified scheme of yeast metabolism and stoichiometric modelling. According to this scheme aspartate and alanine in S. uvarum under the experimental conditions used is synthesised in the mitochondria. Synthesis of alanine in the mitochondria was also demonstrated for Spodoptera frugiperda. For both organisms malic enzyme was also operative. For S. uvarum it was shown that the activity of malic enzyme is sufficient for supporting the mitochondrial biosynthetic reactions with NADPH.  相似文献   

18.
The yeast Saccharomyces cerevisiae is a useful model system for examining the biosynthesis of sterols in eukaryotic cells. To investigate underlying regulation mechanisms, a flux analysis of the ergosterol pathway was performed. A stoichiometric model was derived based on well known biochemistry of the pathway. The model was integrated in the Software COMPFlux which uses a global optimization algorithm for the estimation of intracellular fluxes. Sterol concentration patterns were determined by gas chromatography in aerobic and anaerobic batch cultivations, when the sterol metabolism was suppressed due to the absence of oxygen. In addition, the sterol concentrations were observed in a cultivation which was shifted from anaerobic to aerobic growth conditions causing the sterol pools in the cell to be filled. From time-dependent flux patterns, possible limitations in the pathway could be localized and the esterification of sterols was identified as an integral part of regulation in ergosterol biosynthesis.  相似文献   

19.
S. cerevisiae was grown in a blackstrap molasses containing medium in batch and fed-batch cultures. The following parameters were varied: pH (from 4.0 to 6.5), dissolved oxygen (DO) (from 0 to 5.0 mg O2L–1) and sucrose feeding rate. When glucose concentration (S) was higher than 0.5 g L–1 a reduction in the specific invertase activity of intact cells (v) and an oscillatory behavior of v values during fermentation were observed. Both the invertase reduction and the oscillatory behavior of v values could be related to the glucose inhibitory effect on invertase biosynthesis. The best culture conditions for attainingS. cerevisiae cells suitable for invertase production were: temperature=30°C; pH=5.0; DO=3.3 mg O2L–1; (S)=0.5 g L–1 and sucrose added into the fermenter according to the equations: (V–Vo)=t2/16 or (V–Vo)=(Vf–Vo)·(e0.6t–1)/10.This work was supported by FAPESP  相似文献   

20.
Flotation or cell recovery in foams (proportion of the total cells in the medium transferred to the foam) and flotation efficiency (proportion of the cells transferred from an initial volume of medium equal to the residual volume after flotation) are functions of time, aeration rate, initial volume of medium, and initial concentration of cells. Cell recovery reached constant values (around 96.4 ± 6.3%) and flotation efficiency decreased (owing to increases in the liquid content of the foam), with increases in air flow rate (above 6–7 ml air s–1) and volumes of medium (above 11 ml) added to the column. Increases in concentration of cells in the medium led to increases in the concentration of cells in the foam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号