首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Post-embryonic growth is characterized by a constant reduction of some growth parameters in relation to other growth parameters. Comparison of growth in chickens, rats and nematodes reveals an identical growth pattern, so a theory about the growth process in general is presented. It is presumed that the same growth promoting and growth inhibiting substances regulate not only growth but also ageing and that it is the equilibrium between growth promoters and growth inhibitors which is constantly changed.  相似文献   

2.
Anchorage-independent growth, i.e., growth in semi-solid medium is considered a marker of cellular transformation of fibroblast cells. Diploid human fibroblasts ordinarily do not exhibit such growth but can grow transiently when medium contains high concentrations of fetal bovine serum. This suggests that some growth factor(s) in serum is responsible for anchorage-independent growth. Much work has been done to characterize the peptide growth factor requirements of various rodent fibroblast cells for anchorage-independent growth; however, the requirements of human fibroblasts are not known. To determine the peptide growth factor requirements of human fibroblasts for anchorage-independent growth, we used medium containing serum that had had its peptide growth factors inactivated. We found that either platelet-derived growth factor (PDGF) or the basic form of fibroblast growth factor (bFGF) induced anchorage-independent growth. Epidermal growth factor (EGF) did not enhance the growth induced by PDGF, or did so only slightly. Transforming growth factor beta (TGF-beta) decreased the growth induced by PDGF. EGF combined with TGF-beta induced colony formation in semi-solid medium at concentrations at which neither growth factor by itself was effective, but the combination was much less effective in stimulating anchorage-independent growth than PDGF or bFGF. This work showed that PDGF, or bFGF, or EGF combined with TGF-beta can stimulate anchorage-independent growth of nontransformed human fibroblasts. The results support the idea that cellular transformation may reduce or eliminate the need for exogenous PDGF or bFGF.  相似文献   

3.
How the rate of cell growth is influenced by cell size is a fundamental question of cell biology. The simple model that cell growth is proportional to cell size, based on the proposition that larger cells have proportionally greater synthetic capacity than smaller cells, leads to the prediction that the rate of cell growth increases exponentially with cell size. However, other modes of cell growth, including bilinear growth, have been reported. The distinction between exponential and bilinear growth has been explored in particular detail in the fission yeast Schizosaccharomyces pombe. We have revisited the mode of fission yeast cell growth using high-resolution time-lapse microscopy and find, as previously reported, that these two growth models are difficult to distinguish both because of the similarity in shapes between exponential and bilinear curves over the two-fold change in length of a normal cell cycle and because of the substantial biological and experimental noise inherent to these experiments. Therefore, we contrived to have cells grow more than twofold, by holding them in G2 for up to 8 h. Over this extended growth period, in which cells grow up to 5.5-fold, the two growth models diverge to the point that we can confidently exclude bilinear growth as a general model for fission yeast growth. Although the growth we observe is clearly more complicated than predicted by simple exponential growth, we find that exponential growth is a robust approximation of fission yeast growth, both during an unperturbed cell cycle and during extended periods of growth.  相似文献   

4.
Intrinsic and extrinsic control of growth in developing organs   总被引:10,自引:0,他引:10  
The growth rate and final size of developing organs is controlled by organ-intrinsic mechanisms as well as by hormones and growth factors that originate outside the target organ. Recent work on Drosophila imagined discs and other regenerating systems has led to the conclusion that the intrinsic growth-control mechanism that controls regenerative growth depends on position-specific interactions between cells and their neighbors, and that these interactions also control pattern formation. According to this interpretation, local growth by cell proliferation is stimulated when cells with disparate positional information are confronted as a result of grafting or wound healing. This local growth leads to intercalation of cells with intervening positional values until the positional information discontinuity is eliminated. When all discontinuities have been eliminated from a positional field, growth stops. In this article we consider the possibility that organ growth during normal development may be controlled by an intercalation mechanism similar to that proposed for regenerative growth. Studies of imaginal disc growth are consistent with this suggestion, and in addition they show that the cell interactions thought to control growth are independent of cell lineage. Developing organs of vertebrates also show intrinsic growth-control mechanisms, as demonstrated by the execution of normal growth programs by immature organs that are transplanted to fully grown hosts or to hosts with genetically different growth parameters. Furthermore, these organ-intrinsic mechanisms also appear to be based on position-specific cell interactions, as suggested by the growth stimulation seen after partial extirpation or rearrangement by grafting. In organs of most adult vertebrates, the organ-intrinsic growth-control system seems to be suppressed as shown by the loss of regenerative ability, although it is clearly retained in the limbs, tails and other organs of salamanders. The clearest example of an extrinsic growth regulator is growth hormone, which plays a dominant role along with insulin-like growth factors, thyroid hormone and sex hormones in supporting the growth of bones and other organs in postnatal mammals. These hormones do not appear to regulate prenatal growth, but other hormones and insulin-like growth factors may be important prenatally. The importance of other growth factors in regulating organ growth in vivo remains to be established. It is argued that both intrinsic and extrinsic factors control organ growth, and that there may be important interactions between the two types of control during development.  相似文献   

5.
Unlike other mammals, Old World primates have five growth hormone-like genes that are highly divergent at the amino acid level from the single growth hormone genes found in nonprimates. Additionally, there is a change in the interaction of growth hormone with its receptor in humans such that human growth hormone functions in nonprimates, whereas nonprimate growth hormone is ineffective in humans. A Southern blotting analysis of the genome of a prosimian, Galago senegalensis, revealed a single growth hormone locus. This single gene was PCR-amplified from genomic DNA and sequenced. It has a rate of nonsynonymous nucleotide substitution less than one fourth that of the human growth hormone gene, while the rates of synonymous substitution in the two species are less different. Human and rhesus monkey growth hormones exhibit variation at a number of amino acid residues that can affect receptor binding. The galago growth hormone is conservative at each of these sites, indicating that this growth hormone is functionally like nonprimate growth hormones. These observations indicate that the amplification and rapid divergence of primate growth hormones occurred after the separation of the higher primate lineage from the galago lineage.  相似文献   

6.
The developmental mechanisms by which growth is coordinated among developing organs are largely unknown and yet are essential to generate a correctly proportioned adult. In particular, such coordinating mechanisms must be able to accommodate perturbations in the growth of individual organs caused by environmental or developmental stress. By autonomously slowing the growth of the developing wing discs within Drosophila larvae, we show that growing organs are able to signal localized growth perturbation to the other organs in the body and slow their growth also. Growth rate is so tightly coordinated among organs that they all show approximately the same reduction in growth rate as the developing wings, thereby maintaining their correct size relationship relative to one another throughout development. Further, we show that the systemic growth effects of localized growth-perturbation are mediated by ecdysone. Application of ecdysone to larvae with growth-perturbed wing discs rescues the growth rate of other organs in the body, indicating that ecdysone is limiting for their growth, and disrupts the coordination of their growth with growth of the wing discs. Collectively our data demonstrate the existence of a novel growth-coordinating mechanism in Drosophila that synchronizes growth among organs in response to localized growth perturbation.  相似文献   

7.
The comparative analysis of animal growth still awaits full integration into life‐history studies, partially due to the difficulty of defining a comparable measure of growth rate across species. Using growth data from 50 primate species, we introduce a modified "general growth model" and a dimensionless growth rate coefficient β that controls for size scaling and phylogenetic effects in the distribution of growth rates. Our results contradict the prevailing idea that slow growth characterizes primates as a group: the observed range of β values shows that not all primates grow slowly, with galago species exhibiting growth rates similar or above the mammalian average, while other strepsirrhines and most New World monkeys show limited reduction in growth rates. Low growth rate characterizes apes and some papionines. Phylogenetic regressions reveal associations between β and life‐history variables, providing tests for theories of primate growth evolution. We also show that primate slow growth is an exclusively postnatal phenomenon. Our study exemplifies how the dimensionless approach promotes the integration of growth rate data into comparative life‐history analysis, and demonstrates its potential applicability to other cases of adaptive diversification of animal growth patterns.  相似文献   

8.
The adolescent growth spurt in linear dimension in humans is considered to be unique among mammals, but few comparative studies have been done, even on chimpanzees. Growth of the summed length of crown to rump, thigh, and leg was studied longitudinally in 12 chimpanzees. We took body weight growth and reproductive maturation into consideration. Reproductive maturation was monitored by the swelling of sexual skin and menarche in females, and by testicular development in males. We applied two relationships found in humans between body length growth and the environment to the chimpanzees. The first relationship was the robustness of the growth spurt, meaning that the spurt is absent only in individuals under the most severe environmental pressure. Subjects maturing in a favorable or even mediocre environment are anticipated to show the growth spurt. The second relationship was catch-up growth, where, when the environment is ameliorated, growth may be accelerated to attain the target size. Catch-up growth at the end of the juvenile period may mimic the adolescent growth spurt. Results showed that subjects living under favorable conditions did not exhibit a growth spurt, and that it was only the subjects who had delayed growth in the juvenile period that showed a spurt in adolescence, the period when reproductive maturation occurred. Although we have concluded that chimpanzees do not have an adolescent growth spurt, except in cases of catch-up growth, this does not mean that they have a different growth pattern from that of humans. The absence of a growth spurt may be associated with adaptations to chimpanzee patrilineal society, where adolescent males are incorporated into the adult hierarchy at a low rank.  相似文献   

9.
The insulin-like growth factor II receptor mediates endocytosis of insulin-like growth factor II, resulting in growth factor degradation in lysosomes. This degradation is an important regulator of growth factor activity in vivo, as shown by the phenotype of receptor deficient mice. Recent evidence suggests that the insulin-like growth factor II receptor functions as a tumour supressor in humans, and that loss of receptor function leads to increased levels of the growth factor in tumours. It is difficult to establish such a causal relationship in human tumours however, since most tumours have undergone several genetic changes by the time they are examined. Using mouse embryos deficient in receptor expression, and an insulin-like growth factor II-specific radioimmunoassay, we tested the hypothesis that lack of receptor function leads to local accumulation of insulin-like growth factor II. We found that mutant blood and skeletal muscle had excess insulin-like growth factor II, but that mutant lungs and liver had no accumulation. Mutant hearts had less growth factor than wild-type hearts, an unexpected observation, since the normal embryonic heart expresses very high levels of insulin-like growth factor II receptor, and mutant mice apparently die of congestive heart failure. The placentas of mutant mice were larger than those of wild-type, but this did not correlate with an excess of placental insulin-like growth factor II. These results indicate that lack of insulin-like growth factor II receptor can lead to local excess of the growth factor but that such excess is not a necessary consequence of receptor-deficiency.  相似文献   

10.
This study examines variation in brain growth relative somatic growth in four hominoids and three platyrrhines to determine whether there is a trade-off during ontogeny. I predicted that somatic growth would be reduced during periods of extensive brain growth, and species with larger degrees of encephalization would reach a smaller body size at brain growth completion because more energy is directed towards the brain. I measured cranial capacity and skeletal size in over 500 skeletal specimens from wild populations. I calculated nonlinear growth curves and velocity curves to determine brain/body growth allometry during ontogeny. In addition, I calculated linear regressions to describe the brain/body allometry during the postnatal period prior to brain size reaching an asymptote. The results showed that somatic growth is not substantially reduced in species with extensive brain growth, and body size at brain growth completion was larger in species with greater degrees of encephalization. Furthermore, large body size at brain growth completion was not correlated with interbirth interval, but was significantly correlated with prolonged juvenile periods and late age at maturity when data were corrected for phylogeny. These results indicate that neither reduction in body growth nor reproductive rate are compensatory mechanisms for the energetic costs of brain growth. Other avenues for meeting energetic costs must be in effect. In addition, the results show that somatic growth in encephalized species is particularly slow during the juvenile period after brain growth at or near completion, suggesting that these growth patterns are explained by reasons other than energetic costs.  相似文献   

11.
Ornskov D  Nexo E  Sorensen BS 《The FEBS journal》2006,273(23):5479-5489
The mechanism behind the growth-promoting effect of insulin is a subject of debate. Employing RT4 bladder cancer cells, we examined the cross-talk between insulin and the epidermal growth factor system. We found that insulin induced a time- and dose-dependent (25-1000 nmol.L(-1) insulin) increase in mRNA expression of three ligands from the epidermal growth factor system. Times for peak increase and fold increase after incubation with 250 nmol.L(-1) insulin were as follows: heparin-binding epidermal growth factor-like growth factor, 0.5 h, 1.4-fold, P < 0.05; epiregulin, 3 h, 14-fold, P < 0.0001; and amphiregulin, 3 h, 12-fold, P < 0.001. Induction of heparin-binding epidermal growth factor-like growth factor and amphiregulin was verified at the protein level. We demonstrate that incubation of RT4 bladder cancer cells for 24 h with 250 nmol.L(-1) insulin increases proliferation by 43% (P < 0.0001) as compared to untreated cells. At the same time, phosphorylation and thereby activation of the epidermal growth factor receptor (HER1) was observed. Both phosphorylation and insulin-induced proliferation were almost completely inhibited by the HER1 inhibitor Iressa (P < 0.0001). This shows that insulin leads to activation of HER1, and that HER1 plays an essential role in mediating the growth-promoting effect of insulin. Iressa inhibited not only the activation of HER1 caused by insulin but also the insulin-induced increase in the three ligands (heparin-binding epidermal growth factor-like growth factor, epiregulin and amphiregulin). As heparin-binding epidermal growth factor-like growth factor was induced before epiregulin and amphiregulin upon insulin stimulation, we speculated that the insulin-induced heparin-binding epidermal growth factor-like growth factor initiated the activation of HER1, and that this in turn led to increased expression of epiregulin and amphiregulin and thereby to continued activation of HER1. Earlier reports have shown that insulin-like growth factor receptor can activate HER1 via its ligand heparin-binding epidermal growth factor-like growth factor. In accord with this, we found that treatment of RT4 cells with recombinant heparin-binding epidermal growth factor-like growth factor mimicked the effect of insulin, with induction of mRNA for the three ligands. However, the insulin-induced increase in mRNA expression of amphiregulin and epiregulin could not be prevented by the heparin-binding epidermal growth factor-like growth factor inhibitor CRM197, demonstrating that heparin-binding epidermal growth factor-like growth factor is not essential for the insulin-induced increase in the expression of these ligands. In conclusion, we show that insulin-induced growth in RT4 cells requires activated HER1. Furthermore, activation of HER1 is required for the insulin-induced increase in expression of the HER1 ligands heparin-binding epidermal growth factor-like growth factor, amphiregulin and epiregulin.  相似文献   

12.
This investigation evaluates hypotheses that seek to explain temporal retardation or prolongation of human ontogeny. Current hypotheses that address this issue are poorly defined and conflate several distinct theoretical positions. A model that predicts homogeneity in the extension of human growth periods is evaluated. This model is contrasted with two alternatives. The first alternative predicts heterogeneity in the extension of human growth periods. The second anticipates that human growth prolongation is the result of the uniquely derived “insertion” of a human childhood period into an ancestral ontogenetic trajectory. Allometric analyses of body mass growth data from 21 species of anthropoid primates suggest that human female and male ontogenies often depart from patterns established by other primates, but these departures are not uniformly exceptional. Comparisons imply that derived changes in human growth are heterogeneous. Relative to interspecific expectations, early growth periods are much prolonged, but later growth periods are actually reduced. Moreover, the attributes of early growth periods, including growth rates, timing of growth events, and size-for-age, are highly variable across primates. Low correlations among growth periods suggest independence among growth phases. These analyses highlight minimal distinctions between competing models (heterogeneous extension and insertion hypotheses) that attempt to explain human growth prolongation. More important, the present study facilitates refinements of causal models that have been proposed to explain human growth prolongation. Specifically, human growth prolongation may be related to derived changes in patterns of brain development. Alternatively, metabolic factors may have exerted influences on human ontogeny. However, models that predict long growth periods as a byproduct of metabolic factors do not adequately explain temporal retardation of human ontogeny. Am J Phys Anthropol 107:331–350, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
Aims We present an improved model for the growth of individuals in plant populations experiencing competition.Methods Individuals grow sigmoidally according to the Birch model, which is similar to the more commonly used Richards model, but has the advantage that initial plant growth is always exponential. The individual plant growth models are coupled so that there is a maximum total biomass for the population. The effects of size-asymmetric competition are modeled with a parameter that reflects the size advantage that larger individual have over smaller individuals. We fit the model to data on individual growth in crowded populations of Chenopodium album .Important findings When individual plant growth curves were not coupled, there was a negative or no correlation between initial growth rate and final size, suggesting that competitive interactions were more important in determining final plant size than were plants' initial growth rates. The coupled growth equations fit the data better than individual, uncoupled growth models, even though the number of estimated parameters in the coupled competitive growth model was far fewer, indicating the importance of modeling competition and the degree of size-asymmetric growth explicitly. A quantitative understanding of stand development in terms of the growth of individuals, as altered by competition, is within reach.  相似文献   

14.
Nonlinear growth cost in Menidia menidia: theory and empirical evidence   总被引:4,自引:0,他引:4  
Juvenile growth is submaximal in many species, suggesting that a trade-off with juvenile growth must exist. In support of this, recent studies have demonstrated that rapid growth early in life results in decreased physiological performance. Theory clearly shows that for submaximal growth in juveniles to be optimal, the cost of growth must be nonlinear. However, nearly all of the empirical evidence for costs of growth comes from linear comparisons between fast- and slow-growing groups. It is consequently unclear whether any known cost can account for the evolution of submaximal juvenile growth. To test whether the cost of growth exhibits the logically necessary nonlinearity, we measured critical swimming speed (Ucrit), the maximum speed sustained in incremental velocity trials, in Atlantic silversides, a species for which the costs and benefits of growth are well studied. To increase our ability to detect a nonlinear relationship between Ucrit, a proxy for juvenile fitness, and growth, we manipulated ration levels to produce a broad range of growth rates (0.16 mm/day(-1) to 1.20 mm/day(-1)). Controlling for size and age, we found that Ucrit decreased precipitously as growth approached the physiological maximum. Using Akaike's information criterion, we show that swimming performance decreases with the square of growth rate, providing the first demonstration of a nonlinear cost of growth.  相似文献   

15.
The fetal origins of adult disease hypothesis suggests that poor intrauterine growth is associated with an increased risk of cardiovascular disease. The hypothesis goes on to implicate different growth 'phenotypes', particularly disproportionate growth, in the determination of the type of cardiovascular disease that develops. Analysis of the antenatal growth of a low-risk pregnancy population does not identify such growth phenotypes within the general population. Rather, intrauterine growth is characterized by poor predictability of subsequent size, suggesting that centile crossing is a common feature of intrauterine growth. Furthermore, there is a sexually dimorphic pattern to this growth that needs to be considered in further work to test the fetal origins hypothesis.  相似文献   

16.
The hypothesis that growth in Pacific salmon Oncorhynchus spp. is dependent on previous growth was tested using annual scale growth measurements of wild Chinook salmon Oncorhynchus tshawytscha returning to the Yukon and Kuskokwim Rivers, Alaska, from 1964 to 2004. First-year marine growth in individual O. tshawytscha was significantly correlated with growth in fresh water. Furthermore, growth during each of 3 or 4 years at sea was related to growth during the previous year. The magnitude of the growth response to the previous year's growth was greater when mean year-class growth during the previous year was relatively low. Length (eye to tail fork, L ETF) of adult O. tshawytscha was correlated with cumulative scale growth after the first year at sea. Adult L ETF was also weakly correlated with scale growth that occurred during freshwater residence 4 to 5 years earlier, indicating the importance of growth in fresh water. Positive growth response to previous growth in O. tshawytscha was probably related to piscivorous diet and foraging benefits of large body size. Faster growth among O. tshawytscha year classes that initially grew slowly may reflect high mortality in slow growing fish and subsequent compensatory growth in survivors. Oncorhynchus tshawytscha in this study exhibited complex growth patterns showing a positive relationship with previous growth and a possible compensatory response to environmental factors affecting growth of the age class.  相似文献   

17.
A polypeptide growth inhibitor, designated as mammary derived growth inhibitor, has previously been purified from lactating bovine mammary glands. Polyclonal rabbit antiserum raised against mammary derived growth inhibitor cross-reacts with bovine heart fatty acid binding protein and bovine peripheral myelin P2 protein. These results are consistent with the observation that the amino acid sequence of mammary derived growth inhibitor showed homology to the sequences of these proteins. In a parallel series of immunoblotting experiments, rabbit anti-mammary derived growth inhibitor also reacted specifically with a fibroblast growth inhibitor purified from the conditioned medium of cultured mouse 3T3 fibroblasts. These data suggest that bovine mammary derived growth inhibitor and mouse fibroblast growth inhibitor may share common structural features and raise the possibility that these growth inhibitors may together define a new family of growth regulatory molecules.  相似文献   

18.
Despite the continued presence of growth plates in aged rats, longitudinal growth no longer occurs. The aims of this study were to understand the reasons for the cessation of growth. We studied the growth plates of femurs and tibiae in Wistar rats aged 62-80 weeks and compared these with the corresponding growth plates from rats aged 2-16 weeks. During skeletal growth, the heights of the plates, especially that of the hypertrophic zone, reflected the rate of bone growth. During the period of decelerating growth, it was the loss of large hydrated chondrocytes that contributed most to the overall decrease in the heights of the growth plates. In the old rats we identified four categories of growth plate morphology that were not present in the growth plates of younger rats: (a). formation of a bone band parallel to the metaphyseal edge of the growth plate, which effectively sealed that edge; (b). extensive areas of acellularity, which were resistant to resorption and/or remodeling; (c). extensive remodeling and bone formation within cellular regions of the growth plate; and (d). direct bone formation by former growth plate chondrocytes. These processes, together with a loss of synchrony across the plate, would prevent further longitudinal expansion of the growth plate despite continued sporadic proliferation of chondrocytes.  相似文献   

19.
For animal development it is necessary that organs stop growing after they reach a certain size. However, it is still largely unknown how this termination of growth is regulated. The wing imaginal disc of Drosophila serves as a commonly used model system to study the regulation of growth. Paradoxically, it has been observed that growth occurs uniformly throughout the disc, even though Decapentaplegic (Dpp), a key inducer of growth, forms a gradient. Here, we present a model for the control of growth in the wing imaginal disc, which can account for the uniform occurrence and termination of growth. A central feature of the model is that net growth is not only regulated by growth factors, but by mechanical forces as well. According to the model, growth factors like Dpp induce growth in the center of the disc, which subsequently causes a tangential stretching of surrounding peripheral regions. Above a certain threshold, this stretching stimulates growth in these peripheral regions. Since the stretching is not completely compensated for by the induced growth, the peripheral regions will compress the center of the disc, leading to an inhibition of growth in the center. The larger the disc, the stronger this compression becomes and hence the stronger the inhibiting effect. Growth ceases when the growth factors can no longer overcome this inhibition. With numerical simulations we show that the model indeed yields uniform growth. Furthermore, the model can also account for other experimental data on growth in the wing disc.  相似文献   

20.
It has been recognized for a long time that the neuronal cytoskeleton plays an important part in neurite growth and growth cone pathfinding, the mechanism by which growing axons find an appropriate route through the developing embryo to their target cells. In the growth cone, many intracellular signaling pathways that are activated by guidance cues converge on the growth cone cytoskeleton and regulate its dynamics. Most of the research effort in this area has focussed on the actin, microfilament cytoskeleton of the growth cone, principally because it underlies growth cone motility, the extension and retraction of filopodia and lamellipodia, and these structures are the first to encounter guidance cues during growth cone advance. However, more recently, it has become apparent that the microtubule cytoskeleton also has a role in growth cone pathfinding and is also regulated by guidance cues operating through intracellular signaling pathways via engagement with cell membrane receptors. Furthermore, recent work has revealed an interaction between these two components of the growth cone cytoskeleton that is probably essential for growth cone turning, a fundamental growth cone behavior during pathfinding. In this short review I discuss recent experiments that uncover the function of microtubules in growth cones, how their behavior is regulated, and how they interact with the actin filaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号