首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The role of protein kinase C (PKC) isozymes in phorbol myristate acetate (PMA)-induced sphingosine 1-phosphate (S1P) receptor 1 (S1P1) phosphorylation was studied. Activation of S1P1 receptors induced an immediate increase in intracellular calcium, which was blocked by preincubation with PMA. Both S1P and PMA were able to increase S1P1 phosphorylation in a concentration- and time-dependent fashion. Down-regulation of PKC (overnight incubation with PMA) blocked the subsequent effect of the phorbol ester on S1P1 phosphorylation, without decreasing that of the natural agonist. Pharmacological inhibition of PKC α prevented the effects of PMA on S1P-triggered intracellular calcium increase and on S1P1 phosphorylation; no such effect was observed on the effects of the sphingolipid agonist. The presence of PKC α and β isoforms in S1P1 immunoprecipitates was evidenced by Western blotting. Additionally, expression of dominant-negative mutants of PKC α or β and knockdown of these isozymes using short hairpin RNA, markedly attenuated PMA-induced S1P1 phosphorylation. Our results indicate that the classical isoforms, mainly PKC α, mediate PMA-induced phosphorylation and desensitization of S1P1.  相似文献   

2.
3.
Selective S1P4 receptor antagonists could be novel therapeutic agents for the treatment of influenza infection in addition to serving as a useful tool for understanding S1P4 receptor biological functions. 5-(2,5-Dichlorophenyl)-N-(2,6-dimethylphenyl)furan-2-carboxamide was identified from screening the Molecular Libraries-Small Molecule Repository (MLSMR) collection and selected as a promising S1P4 antagonist hit with moderate in vitro potency and high selectivity against the other family receptor subtypes (S1P1-3,5). Rational chemical modifications of the hit allowed the disclosure of the first reported highly selective S1P4 antagonists with low nanomolar activity and adequate physicochemical properties suitable for further lead-optimization studies.  相似文献   

4.
Sphingosine-1-phosphate (S1P) receptors S1P1 are emerging molecular targets for the treatment of cancer, vascular and immune diseases, due to their pivotal role in cell migration and survival of immune and endothelial cells. A therapeutic strategy to control S1P1 function is based on agonists that promote changes on S1P1 expression at the plasma membrane. Here, we explored the hypothesis that cell surface expression and function of S1P1 are influenced by direct interactions with P-Rex1, a guanine nucleotide exchange factor for Rac. We demonstrate that P-Rex1-PDZ domains interact with S1P1-carboxyl terminal tail and full length receptor monomers and dimers. Endothelial cells transfected with P-Rex1-PDZ domains show an increased migratory response to S1P. S1P1 trafficking to intracellular compartments is diminished by coexpression of P-Rex1. We conclude that S1P1 signaling linked to cell migration is facilitated by a functional interaction with P-Rex1 via a mechanism that involves the maintenance of S1P1 receptors at the cell membrane.  相似文献   

5.
Although structural changes are most important to determine vascular resistance in portal hypertension, vasoactive mediators also contribute to its regulation. Hepatic stellate cells (HSCs) are assumed to play a role in modulating intrahepatic vascular resistance based on their residence in the space of Disse and capacity to contract. Because sphingosine 1-phosphate (S1P) has been shown to stimulate HSC contractility, we wondered if S1P could regulate portal pressure. S1P at 0.5-5 microM increased portal pressure in isolated rat perfused liver. This effect was abrogated in the presence of a binding antagonist for S1P2, JTE-013. Perfusion of isolated rat liver with 5 microM S1P increased Rho activity in the liver, and co-perfusion with JTE-013 cancelled S1P-induced Rho activation. Because S1P is present in human plasma at approximately 0.2 microM, S1P might readily regulate portal vascular tone in physiological and pathological status. The antagonist for S1P2 merits consideration for treatment of portal hypertension.  相似文献   

6.
We speculated that the sphingosine-1-phosphate (S1P) receptor S1P(2), which uniquely inhibits cell migration, might mediate inhibitory effects on endothelial cell migration and angiogenesis, different from S1P(1) and S1P(3). Mouse vascular endothelial cells, which endogenously express S1P(2) and S1P(3), but not S1P(1), responded to S1P and epidermal growth factor (EGF) with stimulation of Rac, migration, and the formation of tube-like structures on the Matrigel. The S1P(3)-antagonist VPC-23019 abolished S1P-induced, G(i)-dependent Rac stimulation, cell migration, and tube formation, whereas the S1P(2)-antagonist JTE-013 enhanced these S1P-induced responses, suggesting that S1P(2) exerts inhibitory effects on endothelial Rac, migration, and angiogenesis. S1P(2) overexpression markedly augmented S1P-induced, G(i)-independent inhibition of EGF-induced migration and tube formation. Finally, the blockade of S1P(2) by JTE-013 potentiated S1P-induced stimulation of angiogenesis in vivo in the Matrigel implant assay. These observations indicate that in contrast to S1P(1) and S1P(3), S1P(2) negatively regulates endothelial morphogenesis and angiogenesis most likely through down-regulating Rac.  相似文献   

7.
Understanding the mechanisms of sphingosine 1-phosphate (S1P)-induced cyclooxygenase (COX)-2 expression and prostaglandin E2 (PGE2) formation in renal mesangial cells may provide potential therapeutic targets to treat inflammatory glomerular diseases. Thus, we evaluated the S1P-dependent signaling mechanisms which are responsible for enhanced COX-2 expression and PGE2 formation in rat mesangial cells under basal conditions. Furthermore, we investigated whether these mechanisms are operative in the presence of angiotensin II (Ang II) and of the pro-inflammatory cytokine interleukin-1β (IL-1β).  相似文献   

8.
Phylogenetic analysis of transmembrane regions of GPCRs using PHYLIP indicated that the orphan receptor P2Y10 receptor was classified into the cluster consisting nucleotide and lipid receptors. Based on the results, we studied the abilities of nucleotides and lipids to activate the P2Y10 receptors. As a result, sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA) evoked intracellular Ca2+ increases in the CHO cells stably expressing the P2Y10 fused with a G16α protein. These Ca2+ responses were inhibited by S1P receptor and LPA receptor antagonists. The introduction of siRNA designed for P2Y10 receptor into the P2Y10-CHO cells effectively blocked both S1P- and LPA-induced Ca2+ increases. RT-PCR analysis showed that the mouse P2Y10 was expressed in reproductive organs, brain, lung and skeletal muscle, suggesting the receptor plays physiological roles throughout the whole body. In conclusion, the P2Y10 receptor is the first receptor identified as a dual lysophospholipid receptor.  相似文献   

9.
Infection-associated inflammation and coagulation are critical pathologies in sepsis-induced acute lung injury (ALI). This study aimed to investigate the effects of microRNA-363-3p (miR-363-3p) on sepsis-induced ALI and explore the underlying mechanisms. A cecal ligation and puncture-induced septic mouse model was established. The results of this study suggested that miR-363-3p was highly expressed in lung tissues of septic mice. Knockdown of miR-363-3p attenuated sepsis-induced histopathological damage, the inflammation response and oxidative stress in lung tissues. Furthermore, knockdown of miR-363-3p reduced the formation of platelet-derived microparticles and thrombin generation in blood samples of septic mice. Downregulation of miR-363-3p suppressed sphingosine-1-phosphate receptor 1 (S1PR1) expression in lung tissues and subsequently inactivated the nuclear factor kappa-B ligand (NF-κB) signaling. A luciferase reporter assay confirmed that miR-363-3p directly targeted the 3’-untranslated region of the mouse S1pr1 mRNA. Collectively, our study suggests that inactivation of NF-κB signaling is involved in the miR-363-3p/S1PR1 axis-mediated protective effect on septic ALI.  相似文献   

10.
Sphingosine 1-phosphate (S1P) is a ligand for S1P family receptors (S1P(1)-S1P(5)). Of these receptors, S1P(1), S1P(2), and S1P(3) are ubiquitously expressed in adult mice, while S1P(4) and S1P(5) are tissue specific. However, little is known of their expression during embryonal development. We performed Northern blot analyses in mouse embryonal tissue and found that such expression is developmentally regulated. We also examined the expression of these receptors during primitive endoderm (PrE) differentiation of mouse F9 embryonal carcinoma (EC) cells, a well-known in vitro endoderm differentiation system. S1P(2) mRNA was abundantly expressed in F9 EC cells, but little S1P(1) and no S1P(3), S1P(4), or S1P(5) mRNA was detectable. However, S1P(1) mRNA expression was induced during EC-to-PrE differentiation. Studies using small interference RNA of S1P(1) indicated that increased S1P(1) expression is required for PrE differentiation. Thus, S1P(1) may play an important function in PrE differentiation that is not substituted for by S1P(2).  相似文献   

11.
Loss of endothelial barrier function is implicated in the etiology of metastasis, atherosclerosis, sepsis and many other diseases. Studies suggest that sphingosine-1-phosphate (S1P), particularly HDL-bound S1P (HDL–S1P) is essential for endothelial barrier homeostasis and that HDL–S1P may be protective against the loss of endothelial barrier function in disease. This review summarizes evidence providing mechanistic insights into how S1P maintains endothelial barrier function, highlighting the recent findings that implicate the major S1P carrier, HDL, in the maintenance of the persistent S1P-signaling needed to maintain endothelial barrier function. We review the mechanisms proposed for HDL maintenance of persistent S1P-signaling, the evidence supporting these mechanisms and the remaining fundamental questions.  相似文献   

12.
Blockade of the ERK signaling pathway by ERK kinase (MEK) inhibitors selectively enhances the induction of apoptosis by microtubule inhibitors in tumor cells in which this pathway is constitutively activated. We examined the mechanism by which such drug combinations induce enhanced cell death by applying time-lapse microscopy to track the fate of individual cells. MEK inhibitors did not affect the first mitosis after drug exposure, but most cells remained arrested in interphase without entering a second mitosis. Low concentrations of microtubule inhibitors induced prolonged mitotic arrest followed by exit of cells from mitosis without division, with most cells remaining viable. However, the combination of a MEK inhibitor and a microtubule inhibitor induced massive cell death during prolonged mitosis. Impairment of spindle assembly checkpoint function by RNAi-mediated depletion of Mad2 or BubR1 markedly suppressed such prolonged mitotic arrest and cell death. The cell death was accompanied by up-regulation of the pro-apoptotic protein Bim (to which MEK inhibitors contributed) and by down-regulation of the anti-apoptotic protein Mcl-1 (to which microtubule and MEK inhibitors contributed synergistically). Whereas RNAi-mediated knockdown of Bim suppressed cell death, stabilization of Mcl-1 by RNAi-mediated depletion of Mule slowed its onset. Depletion of Mcl-1 sensitized tumor cells to MEK inhibitor-induced cell death, an effect that was antagonized by knockdown of Bim. The combination of MEK and microtubule inhibitors thus targets Bim and Mcl-1 in a cooperative manner to induce massive cell death in tumor cells with aberrant ERK pathway activation.  相似文献   

13.
The contributions of membrane type-1 matrix metalloproteinase (MT1-MMP) and of the glucose-6-phosphate transporter (G6PT) in sphingosine-1-phosphate (S1P)-mediated Ca(2+) mobilization were assessed in glioblastoma cells. We show that gene silencing of MT1-MMP or G6PT decreased the extent of S1P-induced Ca(2+) mobilization, chemotaxis, and extracellular signal-related kinase phosphorylation. Chlorogenic acid and (-)-epigallocatechin-3-gallate, two diet-derived inhibitors of G6PT and of MT1-MMP, respectively, reduced S1P-mediated Ca(2+) mobilization. An intact MT1-MMP/G6PT signaling axis is thus required for efficient Ca(2+) mobilization in response to bioactive lipids such as S1P. Targeted inhibition of either MT1-MMP or G6PT may lead to reduced infiltrative and invasive properties of brain tumor cells.  相似文献   

14.
15.
Angiogenesis, also known as new blood vessel formation, is regulated coordinately with other tissue differentiation events during limb development. Although vascular endothelial cell growth factor (VEGF) is important in the regulation of angiogenesis, chondrogenesis and osteogenesis during limb development, the role of other angiogenic factors is not well understood. Sphingosine 1-phosphate, a platelet-derived lipid mediator, regulates angiogenesis and vascular maturation via its action on the G-protein-coupled receptor S1P(1) (also known as EDG-1). In addition to vascular defects, abnormal limb development was also observed in S1p(1)(-/-) mice. Here we show that strong induction of S1P(1) expression is observed in the blood vessels and the interdigital mesenchymal cells during limb development. Deletion of S1P(1) results in aberrant chondrocyte condensation and defective digit morphogenesis. Interestingly, the vasculature in the S1p(1)(-/-) limbs was hyperplastic and morphologically altered. In addition, the hypoxia inducible factor (HIF)-1 alpha and its response gene VEGF were induced in S1p(1)(-/-) limbs. However, aberrant regulation of HIF-1 alpha and VEGF were not observed in embryonic fibroblasts derived from S1p(1)(-/-) mice, suggesting a non-cell autonomous effect of S1P(1) on VEGF expression. Indeed, similar limb defects were observed in endothelium-specific S1P(1) null mice in vivo. These data suggest that the function of S1P(1) in the developing vasculature is essential for proper limb development.  相似文献   

16.
Sphingosine 1-phosphate (S1P) regulates lymphocyte trafficking via type-1 S1P receptor (S1P1) and participates in many pathological conditions. We developed a novel type S1P1-selective antagonist, TASP0251078, which is structurally unrelated to S1P. This competitive antagonist inhibited binding of S1P to S1P1 resulting in reduced signaling downstream of S1P1, including GTPγS-binding and cAMP formation. TASP0251078 also inhibited S1P-induced cellular responses such as chemotaxis and receptor-internalization. Furthermore, when administered in vivo, TASP0251078 induced lymphopenia in blood, which is different from previously reported effects of other S1P1-antagonists. In a mouse contact hypersensitivity model, TASP0251078 effectively suppressed ear swelling, leukocyte infiltration, and hyperplasia. These findings provide the chemical evidence that S1P1 antagonism is responsible for lymphocyte sequestration from the blood, and suggest that the effect of S1P1 agonists on lymphocyte sequestration results from their functional antagonism.  相似文献   

17.
Downregulation of microRNA-590-3p (miR-590-3p) is a frequently occurring, nonphysiological event which is observed in several human cancers, especially breast cancer. However, the significance of miR-590-3p still remain unclear in the progression of this disease. This study explored the role of miR-590-3p in apoptosis of breast cancer cells. Gene expression of miR-590-3p, Sirtuin-1 (SIRT1), Bcl-2 associated X protein (BAX), and p21 was evaluated with real-time polymerase chain reaction (PCR) and SIRT1 protein expression was assessed by Western blot analysis in breast cancer cell lines. Bioinformatics analysis and luciferase reporter assay were used to evaluate targeting of SIRT1 messenger RNA (mRNA) by miR-590-3p. Cells were transfected with miR-590-3p mimic and inhibitor and their effects on the expression and activity of SIRT1 were evaluated. The effects of miR-590-3p upregulation on the acetylation of p53 as well as cell viability and apoptosis were assessed by Western blot analysis, WST-1 assay, and flow cytometry, respectively. miR-590-3p expression was considerably downregulated in breast cancer cells which was accompanied by upregulation of SIRT1 expression. SIRT1 was recognized as a direct target for miR-590-3p in breast cancer cells and its protein expression and activity was dramatically inhibited by the miR-590-3p. In addition, there was an increase in p53 and its acetylated form that ultimately led to upregulation of BAX and p21 expression, suppression of cell survival, and considerable induction of apoptosis in breast cancer cells. These findings suggest that miR-590-3p exerts tumor-suppressing effects through targeting SIRT1 in breast cancer cells, which makes it a potential therapeutic target for developing more efficient treatments for breast cancer.  相似文献   

18.
Interactions between the proteasome inhibitor, bortezomib, and the sphingosine kinase (SPK1) inhibitor, SKI, were examined in BCR/ABL human leukemia cells. Coexposure of K562 or chronic myeloid leukemia (CML) cells from patients to subtoxic concentrations of SKI (10 μM) and bortezomib (100 nM) resulted in a synergistic increase in caspase-3 cleavage and apoptosis. These events were associated with the downregulation of BCR–ABL and Mcl-1, and a marked reduction in SPK1 expression. In imatinib mesylate-resistant K562 cells that displayed decreased BCR–ABL expression, bortezomib/SKI treatment markedly increased apoptosis and inhibited colony-formation in association with the downregulation of Mcl-1. Finally, the bortezomib/SKI regimen also potently induced the downregulation of BCR/ABL and Mcl-1 in human leukemia cells. Collectively, these findings suggest that combining SKI and bortezomib may represent a novel strategy in leukemia, including apoptosis-resistant BCR–ABL+ hematologic malignancies.  相似文献   

19.
Receptor-mediated modulation of KCNQ channels regulates neuronal excitability. This study concerns the kinetics and mechanism of M1 muscarinic receptor-mediated regulation of the cloned neuronal M channel, KCNQ2/KCNQ3 (Kv7.2/Kv7.3). Receptors, channels, various mutated G-protein subunits, and an optical probe for phosphatidylinositol 4,5-bisphosphate (PIP2) were coexpressed by transfection in tsA-201 cells, and the cells were studied by whole-cell patch clamp and by confocal microscopy. Constitutively active forms of Galphaq and Galpha11, but not Galpha13, caused a loss of the plasma membrane PIP2 and a total tonic inhibition of the KCNQ current. There were no further changes upon addition of the muscarinic agonist oxotremorine-M (oxo-M). Expression of the regulator of G-protein signaling, RGS2, blocked PIP2 hydrolysis and current suppression by muscarinic stimulation, confirming that the Gq family of G-proteins is necessary. Dialysis with the competitive inhibitor GDPbetaS (1 mM) lengthened the time constant of inhibition sixfold, decreased the suppression of current, and decreased agonist sensitivity. Removal of intracellular Mg2+ slowed both the development and the recovery from muscarinic suppression. When combined with GDPbetaS, low intracellular Mg2+ nearly eliminated muscarinic inhibition. With nonhydrolyzable GTP analogs, current suppression developed spontaneously and muscarinic inhibition was enhanced. Such spontaneous suppression was antagonized by GDPbetaS or GTP or by expression of RGS2. These observations were successfully described by a kinetic model representing biochemical steps of the signaling cascade using published rate constants where available. The model supports the following sequence of events for this Gq-coupled signaling: A classical G-protein cycle, including competition for nucleotide-free G-protein by all nucleotide forms and an activation step requiring Mg2+, followed by G-protein-stimulated phospholipase C and hydrolysis of PIP2, and finally PIP2 dissociation from binding sites for inositol lipid on the channels so that KCNQ current was suppressed. Further experiments will be needed to refine some untested assumptions.  相似文献   

20.
High affinity and selective S1P(4) receptor (S1P(4)-R) small molecule agonists may be important proof-of-principle tools used to clarify the receptor biological function and effects to assess the therapeutic potential of the S1P(4)-R in diverse disease areas including treatment of viral infections and thrombocytopenia. A high-throughput screening campaign of the Molecular Libraries-Small Molecule Repository was carried out by our laboratories and identified (2Z,5Z)-5-((1-(2-fluorophenyl)-2,5-dimethyl-1H-pyrrol-3-yl)methylene)-3-methyl-2-(methylimino) thiazolidin-4-one as a promising S1P(4)-R agonist hit distinct from literature S1P(4)-R modulators. Rational chemical modifications of the hit allowed the identification of a promising lead molecule with low nanomolar S1P(4)-R agonist activity and exquisite selectivity over the other S1P(1-3,5)-Rs family members. The lead molecule herein disclosed constitutes a valuable pharmacological tool to explore the effects of the S1P(4)-R signaling cascade and elucidate the molecular basis of the receptor function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号