首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
BackgroundAlthough Bushenhuoxue formula (BSHXF) is successfully used as a non-traumatic therapy in treating bone fracture in China, the molecular mechanism underlying its effects remains poorly understood.PurposeThe present study aims to explore the therapeutic effects of BSHXF on fracture healing in mice and the underlying mechanism.MethodsWe performed unilateral open transverse tibial fracture procedure in C57BL/6 mice which were treated with or without BSHXF. Fracture callus tissues were collected and analyzed by X-ray, micro-CT, biomechanical testing, histopathology and quantitative gene expression analysis. Tibial fracture procedure was also performed in Cre-negative and Gli1-CreER; Tgfbr2flox/flox conditional knockout (KO) mice (Tgfbr2Gli1ER) to determine if BSHXF enhances fracture healing in a TGF-β-dependent manner. In addition, scratch-wound assay and cell counting kit-8 (CCK-8) assay were used to evaluate the effect of BSHXF on cell migration and cell proliferation in C3H10T1/2 mesenchymal stem cells, respectively.ResultsBSHXF promoted endochondral ossification and enhanced bone strength in wild-type (WT) or Cre- control mice. In contrast, BSHXF failed to promote bone fracture healing in Tgfbr2Gli1ER conditional KO mice. In the mice receiving BSHXF treatment, TGF-β/Smad2 signaling was significantly activated. Moreover, BSHXF enhanced cell migration and cell proliferation in C3H10T1/2 cells, which was strongly attenuated by the small molecule inhibitor SB525334 against TGF-β type I receptor.ConclusionThese data demonstrated that BSHXF promotes fracture healing by activating TGF-β/Smad2 signaling. BSHXF may be used as a type of alternative medicine for the treatment of bone fracture healing.  相似文献   

2.
3.
4.
In the present study, we aim to elucidate the role of caveolin-1 (Cav-1) in modulating oligodendroglial differentiation of neural progenitor cells (NPCs) in vivo and in vitro. For in vivo experiments, we investigated oligodendroglial differentiation by detecting the expressions of 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) and β-catenin in the brains of wild type mice and Cav-1 knockout mice. Cav-1 knockout mice revealed more oligodendroglial differentiation, but lower levels of β-catenin expression than wild type mice. For in vitro experiments, we observed the potential roles of Cav-1 in modulating β-catenin expression and oligodendroglial differentiation in isolated cultured NPCs by manipulating Cav-1 expression with Cav-1 scaffolding domain peptide and Cav-1 RNA silencing approach. In the differentiating NPCs, Cav-1 scaffolding domain peptide markedly inhibited oligodendroglial formation, but up-regulated the expression of β-catenin. In contrast, the knockdown of Cav-1 promoted oligodendroglial differentiation of NPCs, but down-regulated the expression of β-catenin. Taken together, these results directly prove that caveolin-1 can inhibit oligodendroglial differentiation of NPCs through modulating β-catenin expression.  相似文献   

5.
In a previous study, the Notch pathway inhibited with N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (also called DAPT) was shown to promote the differentiation of fetal liver stem/progenitor cells (FLSPCs) into hepatocytes and to impair cholangiocyte differentiation. The precise mechanism for this, however, was not elucidated. Two mechanisms are possible: Notch inhibition might directly up-regulate hepatocyte differentiation via HGF (hepatocyte growth factor) and HNF (hepatocyte nuclear factor)-4α or might impair cholangiocyte differentiation thereby indirectly rendering hepatocyte differentiation as the dominant state. In this study, HGF and HNF expression was detected after the Notch pathway was inhibited. Although our initial investigation indicated that the inhibition of Notch induced hepatocyte differentiation with an efficiency similar to the induction via HGF, the results of this study demonstrate that Notch inhibition does not induce significant up-regulation of HGF or HNF-4α in FLSPCs. This suggests that Notch inhibition induces hepatocyte differentiation without the influence of HGF or HNF-4α. Moreover, significant down-regulation of HNF-1β was observed, presumably dependent on an impairment of cholangiocyte differentiation. To confirm this presumption, HNF-1β was blocked in FLSPCs and was followed by hepatocyte differentiation. The expression of markers of mature cholangiocyte was impaired and hepatocyte markers were elevated significantly. The data thus demonstrate that the inhibition of cholangiocyte differentiation spontaneously induces hepatocyte differentiation and further suggest that hepatocyte differentiation from FLSPCs occurs at the expense of the impairment of cholangiocyte differentiation, probably being enhanced partially via HNF-1β down-regulation or Notch inhibition.  相似文献   

6.
Bone marrow-derived mesenchymal stem cells (BMSCs) facilitate the angiogenic response of endothelial cells (ECs) within three-dimensional (3D) matrices in vivo and in engineered tissues in vitro in part through paracrine mediators and by acting as stabilizing pericytes. However, the molecular interactions between BMSCs and nascent tubules during the process of angiogenesis are not fully understood. In this study, we have used a tractable 3D co-culture model to explore the functional role of the α6β1 integrin adhesion receptor on BMSCs in sprouting angiogenesis. We report that knockdown of the α6 integrin subunit in BMSCs significantly reduces capillary sprouting, and causes their failure to associate with the nascent vessels. Furthermore, we demonstrate that the BMSCs with attenuated α6 integrin proliferate at a significantly lower rate relative to either control cells expressing non-targeting shRNA or wild type BMSCs; however, despite adding more cells to compensate for this deficit in proliferation, deficient sprouting persists. Collectively, our findings demonstrate that the α6 integrin subunit in BMSCs is important for their ability to stimulate vessel morphogenesis. This conclusion may have important implications in the optimization of cell-based strategies to promote angiogenesis.  相似文献   

7.
8.
AIM:To understand the neuroprotective mechanism of human umbilical cord blood-derived mesenchymal stem cells(hUCB-MSCs) against amyloid-β42(Aβ42) exposed rat primary neurons.METHODS:To evaluate the neuroprotective effect of hUCB-MSCs,the cells were co-cultured with Aβ42-exposed rat primary neuronal cells in a Transwell apparatus.To assess the involvement of soluble fac-tors released from hUCB-MSCs in neuroprotection,an antibody-based array using co-cultured media was conducted.The neuroprotective roles of the identified hUCB-MSC proteins was assessed by treating recombi-nant proteins or specific small interfering RNAs(siRNAs) for each candidate protein in a co-culture system.RESULTS:The hUCB-MSCs secreted elevated levels ofdecorin and progranulin when co-cultured with rat pri-mary neuronal cells exposed to Aβ42.Treatment with recombinant decorin and progranulin protected from Aβ42-neurotoxicity in vitro.In addition,siRNA-mediat-ed knock-down of decorin and progranulin production in hUCB-MSCs reduced the anti-apoptotic effects of hUCB-MSC in the co-culture system.CONCLUSION:Decorin and progranulin may be involved in anti-apoptotic activity of hUCB-MSCs exposed to Aβ42.  相似文献   

9.
S Meng  J Cao  L Wang  Q Zhou  Y Li  C Shen  X Zhang  C Wang 《PloS one》2012,7(7):e40323
Endothelial progenitor cells (EPCs) play an important role in tissue repair after ischemic heart disease. In particular, the recovery of endothelial function is reliant on the ability and rate of EPCs differentiate into mature endothelial cells. The present study evaluated the effect of microRNA 107 (miR-107) on the mechanism of EPCs differentiation. EPCs were isolated from rats' bone marrow and miR-107 expression of EPCs in hypoxic and normoxic conditions were measured by real-time qualitative PCR. CD31 was analyzed by flow cytometry and eNOS was examined by real-time qualitative PCR and western blotting and these were used as markers of EPC differentiation. In order to reveal the mechanism, we used miR107 inhibitor and lentiviral vector expressing a short hairpin RNA (shRNA) that targets miR-107 and hypoxia-inducible factor-1 β (HIF-1β) to alter miR107 and HIF-1β expression. MiR-107 expression were increased in EPCs under hypoxic conditions. Up-regulation of miR-107 partly suppressed the EPCs differentiation induced in hypoxia, while down-regulation of miR-107 promoted EPC differentiation. HIF-1β was the target. This study indicated that miR-107 was up-regulated in hypoxia to prevent EPCs differentiation via its target HIF-1β. The physiological mechanisms of miR-107 must be evaluated if it is to be used as a potential anti-ischemia therapeutic regime.  相似文献   

10.
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized pathologically by the abnormal deposition of extracellular amyloid-β (Aβ) oligomers. However, the nature and precise mechanism of the toxicity of Aβ oligomers are not clearly understood. Aβ oligomers have been previously shown to cause a major loss of EphB2, a member of the EphB family of receptor tyrosine kinases. To determine the effect of EphB2 on Aβ oligomer-induced neurotoxicity and the underlying molecular mechanisms, we examined the EphB2 gene in cultured hippocampal neurons. Using a cellular model of AD, Aβ1–42 oligomers were confirmed to induce neurotoxicity in a time-dependent manner and result in a major decrease of EphB2. EphB2 overexpression could prevent the neurotoxicity of hippocampal neurons from exposure to Aβ1–42 oligomers for 1 h. Further analysis revealed that EphB2 overexpression increased synaptic NR1 and NR2B expression in Aβ1–42 oligomer-treated neurons. Moreover, EphB2 overexpression prevented Aβ1–42 oligomer-induced downregulation of dephosphorylated p38 MAPK and phosphorylated CREB. Together, these results suggest that EphB2 is a factor which protects hippocampal neurons against the toxicity of Aβ1–42 oligomers, and we infer that the protection of EphB2 is achieved by increasing the synaptic NMDA receptor level and downstream p38 MAPK and CREB signaling in hippocampal neurons. This study provides new molecular insights into the neuroprotective effect of EphB2 and highlights its potential therapeutic role in the management of AD.  相似文献   

11.
Adiponectin is the most abundant adipokine secreted from adipocytes. Accumulating evidence suggests that the physiological roles of adiponectin go beyond its metabolic effects. In the present study, we demonstrate that adiponectin receptors 1 and 2 (AdipoR1 and AdipoR2) are expressed in adult hippocampal neural stem/progenitor cells (hNSCs). Adiponectin treatment increases proliferation of cultured adult hNSCs in a dose- and time-dependent manner, whereas apoptosis and differentiation of adult hNSCs into neuronal or glial lineage were not affected. Adiponectin activates AMP-activated protein kinase and p38 mitogen-activated protein kinase (p38MAPK) signaling pathways in adult hNSCs. Pretreatment with the p38MAPK inhibitor SB203580, but not the AMP-activated protein kinase inhibitor Compound C, attenuates adiponectin-induced cell proliferation. Moreover, adiponectin induces phosphorylation of Ser-389, a key inhibitory site of glycogen synthase kinase 3β (GSK-3β), and this effect can be blocked by inhibition of p38MAPK with SB203580. Levels of total and nuclear β-catenin, the primary substrate of GSK-3β, were increased by adiponectin treatment. These results indicate that adiponectin stimulates proliferation of adult hNSCs, via acting on GSK-3β to promote nuclear accumulation of β-catenin. Thus, our studies uncover a novel role for adiponectin signaling in regulating proliferation of adult neural stem cells.  相似文献   

12.
We present two computational models (i) long-range horizontal connections and the nonlinear effect in V1 and (ii) the filling-in process at the blind spot. Both models are obtained deductively from standard regularization theory to show that physiological evidence of V1 and V2 neural properties is essential for efficient image processing. We stress that the engineering approach should be imported to understand visual systems computationally, even though this approach usually ignores physiological evidence and the target is neither neurons nor the brain.
Shunji SatohEmail:
  相似文献   

13.
The heparan sulfate proteoglycan glypican-1, the chondroitin sulfate proteoglycan phosphacan/RPTP (receptor protein-tyrosine phosphatase)-ζ/β and the extracellular matrix protein tenascin-C were all found to be expressed by neural stem cells and by neural cells derived from them. Expression of proteoglycans and tenascin-C increased after retinoic acid induction of SSEA1-positive ES (embryonic stem) cells to nestin-positive neural stem cells, and after neural differentiation, proteoglycans and tenascin-C are expressed by both neurons and astrocytes, where they surround cell bodies and processes and in certain cases show distinctive expression patterns. With the exception of tenascin-C (whose expression may decrease somewhat), expression levels do not change noticeably during the following 2 weeks in culture. The significant expression, by neural stem cells and neurons and astrocytes derived from them, of two major heparan sulfate and chondroitin sulfate proteoglycans of nervous tissue and of tenascin-C, a high-affinity ligand of phosphacan/RPTP-ζ/β, indicates that an understanding of their specific functional roles in stem cell neurobiology will be important for the therapeutic application of this new technology in facilitating nervous tissue repair and regeneration.  相似文献   

14.
The proliferation of hepatic progenitor cells (HPCs) is observed in reactive conditions of the liver and primary liver cancers. Ring1 as a member of polycomb-group proteins which play vital roles in carcinogenesis and stem cell self-renewal was increased in HCC patients and promoted proliferation and survival of cancer cell by degrading p53. However, the mechanisms of Ring1 driving the progression of hepatocarcinogenesis have not been elucidated. In this study, forced expression Ring1 and Ring1 siRNA lentiviral vectors were utilized to stably overexpression and silence Ring1 in HPC cell line (WB-F344), respectively. Our finding indicated that overexpression of Ring1 in HPCs promoted colony formation, cell multiplication, and invasion in vitro, conversely depletion of Ring1 repressed the biological functions of HPCs relative to controls. The expression of β-catenin was upregulated in the HPCs with overexpression of Ring1, and the correlation analysis also showed that β-catenin and Ring1 had a significant correlation in the liver cancer tissues and adjacent tissues. The activation of the Wnt/β-catenin signaling pathway significantly increased the expression of liver cancer stem cells related (LCSCs)-related molecular markers CD90 and EpCAM, which led to the transformation of HPCs into LCSCs. Most importantly, the injection of HPCs with overexpressed Ring1 into the subcutaneous of nude mice leads to the formation of poorly differentiated HCC neoplasm. Our findings elucidate that overexpression of Ring1 the activated Wnt/β-catenin signaling pathway and drove the transformation of HPCs into cancer stem cell-like cells, suggesting Ring1 has extraordinary potential in early diagnosis of HCC.  相似文献   

15.
Luo M  Liu Z  Chen G  Hao H  Lu T  Cui Y  Lei M  Verfaillie CM  Liu Z 《Life sciences》2012,90(13-14):509-518
AimsThis study was to investigate the effect of high glucose (HG) on TGF-β1 expression and the underlying mechanisms in bone marrow stem cells.Main methodsRat bone marrow multipotent adult progenitor cells (MAPCs) were cultured in normal (5.5 mM d-glucose) and HG media (25.5 mM d-glucose) for up to 14 days. l-Glucose (20 mM plus 5.5 mM d-glucose) was used as high osmolarity control. TGF-β1 expression was evaluated using quantitative RT-PCR, ELISA, and immunofluorescence staining for its mRNA and protein level in the cells and in the conditioned media. The expression and activation of ERK1/2 and STAT3 were examined in MAPCs cultured in HG media with Western blot.Key findingsMeasurable level of TGF-β1 was detected in the cells cultured in normal media. TGF-β1 expression was substantially increased in MAPCs after 36 h of culture in HG media with over 20-fold increase in the mRNA and 5-fold increase in protein level over control. Interestingly, ERK1/2 phosphorylation was significantly increased in MAPCs cultured in HG media, while in STAT3 (Tyr705), not STAT3 (Ser727), phosphorylation was dramatically decreased. Treatment of cells with the specific MEK1 inhibitor PD98059 or U0126 suppressed ERK1/2 phosphorylation and TGF-β1 expression, and completely restored the level of STAT3 (Tyr705) phosphorylation in MAPCs cultured in HG media. Treatment of the cells with the specific STAT3 phosphorylation inhibitor AG490 significantly blocked STAT3 (Tyr705) phosphorylation and increased TGF-β1 expression without change in ERK1/2 phosphorylation in MPACs.SignificanceHG increased TGF-β1 expression through inhibition of STAT3 (Tyr705) by enhanced ERK1/2 signaling in MAPCs.  相似文献   

16.
Mesenchymal stem cells (MSCs) promote functional recoveries in pathological experimental models of central nervous system (CNS) and are currently being tested in clinical trials for neurological disorders, but preventive mechanisms of placenta-derived MSCs (PD-MSCs) for Alzheimer''s disease are poorly understood. Herein, we investigated the inhibitory effect of PD-MSCs on neuronal cell death and memory impairment in Aβ1–42-infused mice. After intracerebroventrical (ICV) infusion of Aβ1–42 for 14 days, the cognitive function was assessed by the Morris water maze test and passive avoidance test. Our results showed that the transplantation of PD-MSCs into Aβ1–42-infused mice significantly improved cognitive impairment, and behavioral changes attenuated the expression of APP, BACE1, and Aβ, as well as the activity of β-secretase and γ-secretase. In addition, the activation of glia cells and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were inhibited by the transplantation of PD-MSCs. Furthermore, we also found that PD-MSCs downregulated the release of inflammatory cytokines as well as prevented neuronal cell death and promoted neuronal cell differentiation from neuronal progenitor cells in Aβ1–42-infused mice. These data indicate that PD-MSC mediates neuroprotection by regulating neuronal death, neurogenesis, glia cell activation in hippocampus, and altering cytokine expression, suggesting a close link between the therapeutic effects of MSCs and the damaged CNS in Alzheimer''s disease.  相似文献   

17.
Molecular and Cellular Biochemistry - Neural stem cells (NSCs) are multipotent and undifferentiated cells with the potential to differentiate into neuronal lineages and gliocytes. NSCs have the...  相似文献   

18.
Peroxisome proliferator activated receptor γ, belongs to PPARs, which exerts various metabolic functions including differentiation process. To testify the importance of PPARγ in neural differentiation of mouse embryonic stem cells (mESCs), its expression level was assessed. Data revealed an elevation in expression level of PPARγ when neural precursors (NPs) are formed upon retinoic acid treatment. Thus, involvement of PPARγ in two stages of neural differentiation of mESCs, during and post-NPs formation was examined by application of its agonist and antagonist. Our results indicated that PPARγ inactivation via treatment with GW9662 during NPs formation, reduced expression of neural precursor and neural (neuronal and astrocytes) markers. However, PPARγ inactivation by antagonist treatment post-NPs formation stage only decreased the expression of mature astrocyte marker (Gfap) suggesting that inactivation of PPARγ by antagonist decreased astrocyte differentiation. Here, we have demonstrated the stage dependent role of PPARγ modulation on neural differentiation of mESCs by retinoic acid treatment for the first time.  相似文献   

19.
20.
The rapid expansion of the elderly population has led to the recent epidemic of age-related diseases, including increased incidence and mortality of chronic lung diseases, such as Idiopathic Pulmonary Fibrosis (IPF). Cellular senescence is a major hallmark of aging and has a higher occurrence in IPF. The lung epithelium represents a major site of tissue injury, cellular senescence and aberrant activity of developmental pathways such as the WNT/β-catenin pathway in IPF. The potential impact of WNT/β-catenin signaling on alveolar epithelial senescence in general as well as in IPF, however, remains elusive. Here, we characterized alveolar epithelial cells of aged mice and assessed the contribution of chronic WNT/β-catenin signaling on alveolar epithelial type (AT) II cell senescence. Whole lungs from old (16–24 months) versus young (3 months) mice had relatively less epithelial (EpCAM+) but more inflammatory (CD45+) cells, as assessed by flow cytometry. Compared to young ATII cells, old ATII cells showed decreased expression of the ATII cell marker Surfactant Protein C along with increased expression of the ATI cell marker Hopx, accompanied by increased WNT/β-catenin activity. Notably, when placed in an organoid assay, old ATII cells exhibited decreased progenitor cell potential. Chronic canonical WNT/β-catenin activation for up to 7 days in primary ATII cells as well as alveolar epithelial cell lines induced a robust cellular senescence, whereas the non-canonical ligand WNT5A was not able to induce cellular senescence. Moreover, chronic WNT3A treatment of precision-cut lung slices (PCLS) further confirmed ATII cell senescence. Simultaneously, chronic but not acute WNT/β-catenin activation induced a profibrotic state with increased expression of the impaired ATII cell marker Keratin 8. These results suggest that chronic WNT/β-catenin activity in the IPF lung contributes to increased ATII cell senescence and reprogramming. In the fibrotic environment, WNT/β-catenin signaling thus might lead to further progenitor cell dysfunction and impaired lung repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号