首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Overexpression of SIRT1, a NAD+-dependent class III histone deacetylases (HDACs), is implicated in many cancers and therefore could become a promising antitumor target. Here we demonstrate a small molecule SIRT1 inhibitor, ILS-JGB-1741(JGB1741) with potent inhibitory effects on the proliferation of human metastatic breast cancer cells, MDA-MB 231. The molecule has been designed using medicinal chemistry approach based on known SIRT1 inhibitor, sirtinol. The molecule showed a significant inhibition of SIRT1 activity compared to sirtinol. Studies on the antitumor effects of JGB on three different cancer cell lines, K562, HepG2 and MDA-MB 231 showed an IC50 of 1, 10 and 0.5 μM, respectively. Further studies on MDA-MB 231 cells showed a dose-dependent increase in K9 and K382 acetylation of H3 and p53, respectively. Results also demonstrated that JGB1741-induced apoptosis is associated with increase in cytochrome c release, modulation in Bax/Bcl2 ratio and cleavage of PARP. Flowcytometric analysis showed increased percentage of apoptotic cells, decrease in mitochondrial membrane potential and increase in multicaspase activation. In conclusion, the present study indicates the potent apoptotic effects of JGB1741 in MDA-MB 231 cells.  相似文献   

3.
SIRT1 is an NAD+-dependent deacetylase that counteracts multiple disease states associated with aging and may underlie some of the health benefits of calorie restriction. Understanding how SIRT1 is regulated in vivo could therefore lead to new strategies to treat age-related diseases. SIRT1 forms a stable complex with DBC1, an endogenous inhibitor. Little is known regarding the biochemical nature of SIRT1-DBC1 complex formation, how it is regulated and whether or not it is possible to block this interaction pharmacologically. In this study, we show that critical residues within the catalytic core of SIRT1 mediate binding to DBC1 via its N-terminal region, and that several carboxamide SIRT1 inhibitors, including EX-527, can completely block this interaction. We identify two acetylation sites on DBC1 that regulate its ability to bind SIRT1 and suppress its activity. Furthermore, we show that DBC1 itself is a substrate for SIRT1. Surprisingly, the effect of EX-527 on SIRT1-DBC1 binding is independent of DBC1 acetylation. Together, these data show that protein acetylation serves as an endogenous regulatory mechanism for SIRT1-DBC1 binding and illuminate a new path to developing small-molecule modulators of SIRT1.  相似文献   

4.
Silent information regulator type-1 (SIRT1) is the best-studied member of the Sirtuin (Sir2) family of nicotinamide dinucleotide (NAD)-dependent class III histone deacetylases (HDACs), but has not yet been explored in cutaneous T-cell lymphoma (CTCL). We analyzed five CTCL cell lines and lesional tissues using flow cytometry, immunostaining, immunoblotting, cell death, viability, and apoptosis assays, small-molecule inhibitors, and shRNA knockdown. We found strong SIRT1 expression among CTCL lines relative to normal lymphocytes. CTCL cells in lesional tissues also expressed SIRT1 strongly. SIRT1 knockdown resulted in reduced cellular metabolism and proliferation, increased apoptosis, and PARP cleavage products. Tenovin-1, which reversibly inhibits class III HDACs (SIRT1 and SIRT2), reduced SIRT enzymatic activity and SIRT1 expression and led to increased apoptosis. These alterations were accompanied by increased forkhead box O3 (FoxO3) in several cell lines and increased nuclear p53, as well as acetylated p53 in wtp53 MyLa CTCL line. A combination of class I/II and class III HDACIs (vorinostat and tenovin-1) produced significantly greater growth inhibition, cell death via apoptosis, as well as superior p53 promoter upregulation in wtp53 MyLa cells as compared with either agent alone. This occurred in a partially p53-dependent manner, as these effects were blunted by p53 knockdown. Our results indicate that SIRT1 is strongly expressed in CTCL. Its inhibition results in reduced growth and increased apoptosis of CTCL cells. Furthermore, our findings suggest that some CTCL patients, such as those with wtp53, might benefit more from treatment with a combination of different classes of HDACIs than with a single agent.  相似文献   

5.
6.
Active regulator of SIRT1 (AROS) binds and upregulates SIRT1, an NAD+-dependent deacetylase. In addition, AROS binds RPS19, a structural ribosomal protein, which also functions in ribosome biogenesis and is implicated in multiple disease states. The significance of AROS in relation to ribosome biogenesis and function is unknown. Using human cells, we now show that AROS localizes to (i) the nucleolus and (ii) cytoplasmic ribosomes. Co-localization with nucleolar proteins was verified by confocal immunofluorescence of endogenous protein and confirmed by AROS depletion using RNAi. AROS association with cytoplasmic ribosomes was analysed by sucrose density fractionation and immunoprecipitation, revealing that AROS selectively associates with 40S ribosomal subunits and also with polysomes. RNAi-mediated depletion of AROS leads to deficient ribosome biogenesis with aberrant precursor ribosomal RNA processing, reduced 40S subunit ribosomal RNA and 40S ribosomal proteins (including RPS19). Together, this results in a reduction in 40S subunits and translating polysomes, correlating with reduced overall cellular protein synthesis. Interestingly, knockdown of AROS also results in a functionally significant increase in eIF2α phosphorylation. Overall, our results identify AROS as a factor with a role in both ribosome biogenesis and ribosomal function.  相似文献   

7.
The SIRT1 deacetylase is one of the best-studied putative mediators of some of the anti-aging effects of calorie restriction (CR), but its role in CR-dependent lifespan extension has not been demonstrated. We previously found that mice lacking both copies of SIRT1 displayed a shorter median lifespan than wild-type mice on an ad libitum diet. Here, we report that median lifespan extension in CR heterozygote SIRT1+/− mice was identical (51%) to that observed in wild-type mice, but SIRT1+/− mice displayed a higher frequency of certain pathologies. Although larger studies in additional genetic backgrounds are needed, these results provide strong initial evidence for the requirement of SIRT1 for the lifespan extension effects of CR, but suggest that its high expression is not required for CR-induced lifespan extension.  相似文献   

8.
《FEBS letters》2014,588(9):1523-1528
The modulation of protein deacetylase SIRT1 has a vast therapeutic potential in treatment of several aging-associated diseases. Active regulator of SIRT1 (AROS) is a small endogenous protein which was originally reported to activate SIRT1 through a direct interaction in cancer cells. We show that the interaction between the two proteins is weak and does not alter the activity of SIRT1 in non-cancerous human cells. The results of different in vitro SIRT1 activity assays disclosed AROS as an inhibitor of SIRT1. The functional relationship between AROS and SIRT1 proved to be dependent on the biological context and experimental setting.  相似文献   

9.
去乙酰化酶SIRT1在许多生物过程中具有重要的作用,包括氧化应激、能量代谢、细胞分化及基因组稳定等。细胞的存活及其寿命和氧化应激的存在密切相关。氧化应激可引起多种病理表现,如内皮损伤、线粒体损伤、炎症、自噬、凋亡甚至坏死等。近来研究发现,SIRT1在多种氧化应激相关疾病中保护细胞存活。SIRT1可以通过调控不同转录因子而发挥抗氧化应激作用,但研究发现,SIRT1也对氧化应激有负性调控作用。本文就SIRT1对氧化应激的调控进行概述。  相似文献   

10.
11.
Heat shock proteins (HSPs) play important roles in cellular stress resistance. Previous reports had already suggested that HSP27 played multiple roles in preventing doxorubicin-induced cardiotoxicity. Although HSP25 might have biological functions similar to its human homolog HSP27, the mechanism of HSP25 is still unclear in doxorubicin-induced cardiomyocyte apoptosis. To investigate HSP25 biological function on doxorubicin-induced apoptosis, flow cytometry was employed to analyze cell apoptosis in over-expressing HSP25 H9c2 cells in presence of doxorubicin. Unexpectedly, the H9c2 cells of over-expressing HSP25 have no protective effect on doxorubicin-induced apoptosis. Moreover, no detectable interactions were detected by coimmunoprecipitation between HSP25 and cytochrome c, and HSP25 over-expression failed in preventing cytochrome c release induced by doxorubicin. However, down-regulation of endogenous HSP25 by a specific small hairpin RNA aggravates apoptosis in H9c2 cells. Subsequent studies found that HSP25, but not HSP90, HSP70, and HSP20, interacted with SIRT1. Knockdown of HSP25 decreased the interaction between SIRT1 and p53, leading to increased p53 acetylation on K379, up-regulated pro-apoptotic Bax protein expression, induced cytochrome c release, and triggered caspase-3 and caspase-9 activation. These findings indicated a novel mechanism by which HSP25 regulated p53 acetylation through dissociation of SIRT1 from p53 in doxorubicin-induced H9c2 cell apoptosis.  相似文献   

12.
Cellular senescence, which is known to halt proliferation of aged and stressed cells, plays a key role against cancer development and is also closely associated with organismal aging. While increased insulin‐like growth factor (IGF) signaling induces cell proliferation, survival and cancer progression, disrupted IGF signaling is known to enhance longevity concomitantly with delay in aging processes. The molecular mechanisms involved in the regulation of aging by IGF signaling and whether IGF regulates cellular senescence are still poorly understood. In this study, we demonstrate that IGF‐1 exerts a dual function in promoting cell proliferation as well as cellular senescence. While acute IGF‐1 exposure promotes cell proliferation and is opposed by p53, prolonged IGF‐1 treatment induces premature cellular senescence in a p53‐dependent manner. We show that prolonged IGF‐1 treatment inhibits SIRT1 deacetylase activity, resulting in increased p53 acetylation as well as p53 stabilization and activation, thus leading to premature cellular senescence. In addition, either expression of SIRT1 or inhibition of p53 prevented IGF‐1‐induced premature cellular senescence. Together, these findings suggest that p53 acts as a molecular switch in monitoring IGF‐1‐induced proliferation and premature senescence, and suggest a possible molecular connection involving IGF‐1‐SIRT1‐p53 signaling in cellular senescence and aging.  相似文献   

13.
14.
Sirtuin1 (SIRT1) deacetylase and poly(ADP-ribose)-polymerase-1 (PARP-1) respond to environmental cues, and both require NAD+ cofactor for their enzymatic activities. However, the functional link between environmental/oxidative stress-mediated activation of PARP-1 and SIRT1 through NAD+ cofactor availability is not known. We investigated whether NAD+ depletion by PARP-1 activation plays a role in environmental stimuli/oxidant-induced reduction in SIRT1 activity. Both H2O2 and cigarette smoke (CS) decreased intracellular NAD+ levels in vitro in lung epithelial cells and in vivo in lungs of mice exposed to CS. Pharmacological PARP-1 inhibition prevented oxidant-induced NAD+ loss and attenuated loss of SIRT1 activity. Oxidants decreased SIRT1 activity in lung epithelial cells; however increasing cellular NAD+ cofactor levels by PARP-1 inhibition or NAD+ precursors was unable to restore SIRT1 activity. SIRT1 was found to be carbonylated by CS, which was not reversed by PARP-1 inhibition or selective SIRT1 activator. Overall, these data suggest that environmental/oxidant stress-induced SIRT1 down-regulation and PARP-1 activation are independent events despite both enzymes sharing the same cofactor.  相似文献   

15.
16.
《Epigenetics》2013,8(7):695-700
Methyl-CpG binding protein 2 (MeCP2) binds methylated cytosines at CpG sites on DNA and it is thought to function as a critical epigenetic regulator. Mutations in the MeCP2 gene have been associated to Rett syndrome, a human neurodevelopmental disorder. Here we show that MeCP2 is acetylated by p300 and that SIRT1 mediates its deacetylation. SIRT1, the mammalian homologue of Sir2 in yeast, is a nicotinamide-adenine dinucleotide (NAD+)-dependent histone deacetylase that belongs to the family of HDAC class III sirtuins. Importantly, SIRT1 has been shown to play a critical role in synaptic plasticity and memory formation. This study reveals a functional interplay between two critical epigenetic regulators, MeCP2 and SIRT1, which controls MeCP2 binding activity to the brain-derived neurotrophic factor (BDNF) promoter in a specific region of the brain.  相似文献   

17.
Methyl-CpG binding protein 2 (MeCP2) binds methylated cytosines at CpG sites on DNA and it is thought to function as a critical epigenetic regulator. Mutations in the MeCP2 gene have been associated to Rett syndrome, a human neurodevelopmental disorder. Here we show that MeCP2 is acetylated by p300 and that SIRT1 mediates its deacetylation. SIRT1, the mammalian homologue of Sir2 in yeast, is a nicotinamide-adenine dinucleotide (NAD+)-dependent histone deacetylase that belongs to the family of HDAC class III sirtuins. Importantly, SIRT1 has been shown to play a critical role in synaptic plasticity and memory formation. This study reveals a functional interplay between two critical epigenetic regulators, MeCP2 and SIRT1, which controls MeCP2 binding activity to the brain-derived neurotrophic factor (BDNF) promoter in a specific region of the brain.  相似文献   

18.
Sirtuins (SIRT) belonging to the NAD+ dependent histone deacetylase III class of enzymes have emerged as master regulators of metabolism and longevity. However, their role in prevention of organismal aging and cellular senescence still remains controversial. In the present study, we now report upregulation of SIRT2 as a specific feature associated with stress induced premature senescence but not with either quiescence or cell death. Additionally, increase in SIRT2 expression was noted in different types of senescent conditions such as replicative and oncogene induced senescence using multiple cell lines. Induction of SIRT2 expression during senescence was dependent on p53 status as depletion of p53 by shRNA prevented its accumulation. Chromatin immunoprecipitation revealed the presence of p53 binding sites on the SIRT2 promoter suggesting its regulation by p53, which was also corroborated by the SEAP reporter assay. Overexpression or knockdown of SIRT2 had no effect on stress induced premature senescence, thereby indicating that SIRT2 increase is not a cause of senescence; rather it is an effect linked to senescence-associated changes. Overall, our results suggest SIRT2 as a promising marker of cellular senescence at least in cells with wild type p53 status.  相似文献   

19.
SIRT1, a nicotinamide adenine dinucleotide (NAD+)‐dependent histone/protein deacetylase, has been extensively studied recently for its critical role in the regulation of physiology, calorie restriction and aging. Studies on laboratory mice showed that expression of SIRT1 can be induced by starvation in a p53‐dependent manner and requires the p53‐binding sites present in the Sirt1 promoter. However, it remains to be determined whether these findings based on rodents apply to human beings. In this paper, we characterized a putative p53‐binding element in the human SIRT1 promoter that might be required for the up‐regulation of SIRT1 in response to nutritional stress. The p53‐binding site in the promoter of human SIRT1 is more deviant from the consensus sequence than the corresponding sequence in the mouse Sirt1. There is a C to A change at the second half site in human SIRT1, thus disrupting the core‐binding element CWWG in the canonical RRRCWWGYYY. To test whether such sequence change would affect its binding with p53 and the SIRT1 expression under stress, we studied various human cell lines with different p53 status and cells with ectopic expression of functionally distinct p53. We found that serum withdrawal also up‐regulates human SIRT1 gene expression in a p53‐dependent manner and that the p53‐binding element in SIRT1 is required for the up‐regulation. Thus, the mechanism responsible for the regulation of SIRT1 expression by p53 is conserved between mice and human beings.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号