首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Haukioja E 《Oecologia》2003,136(2):161-168
Leaf maturation in mountain birch (Betula pubescens ssp. czerepanovii) is characterized by rapid shifts in the types of dominant phenolics: from carbon-economic flavonoids aglycons in flushing leaves, via hydrolysable tannins and flavonoid glycosides, to carbon-rich proanthocyanidins (condensed tannins) in mature foliage. This shift accords with the suggested trade-offs between carbon allocation to plant defense and growth, but may also relate to the simultaneous decline in nutritive leaf traits, such as water, proteins and sugars, which potentially limit insect growth. To elucidate how birch leaf quality translates into insect growth, I introduce a simple model that takes into account defensive compounds but also acknowledges insect demand for nutritive compounds. The effects of defensive compounds on insect growth depend strongly on background variation in nutritive leaf traits: compensatory feeding on low nutritive diets increases the intake of defensive compounds, and the availability of growth-limiting nutritive compounds may modify the effects of defenses. The ratio of consumption to larval growth (both in dry mass) increases very rapidly with leaf maturation: from 2.9 to 9.8 over 2 weeks in June-July, and to 15 by August. High concentrations in mature birch leaves of "quantitative" defenses, such as proanthocyanidins (15-20% of dry mass), presumably prevent further consumption. If the same compounds had also protected half-grown leaves (which supported the same larval growth with only one third of the dry matter consumption of older leaves), the same intake of proanthocyanidins would have demanded improbably high concentrations (close to 50%) in young leaves. The model thus suggests an adaptive explanation for the high levels of "quantitative" defenses, such as proanthocyanidins, in low-nutritive but not in high-nutritive leaves because of the behavioral responses of insect feeding to leaf nutritive levels.  相似文献   

2.
HIV-1 Vif(viral infectivity factor)蛋白是由保守的vif基因编码的碱性蛋白质,是HIV-1病毒的辅助调节蛋白之一.研究表明Vif蛋白具有调节病毒侵入、组装、出芽和成熟等功能.此外,Vif蛋白能够特异性地与体内抗病毒因子APOBEC3G相互作用,增强病毒的感染性.因此,针对HIV-1Vif蛋白进行抑制剂设计已经成为抗HIV药物研究的热点之一.本文对HIV-1Vif蛋白的结构与功能研究的最新进展进行了综述.  相似文献   

3.
The interaction between one polychlorobiphenyl (3,3′,4,4′,-tetrachlorobiphenyl, coded PCB77) and the four DNA nucleic acid–base is studied by means of quantum mechanics calculations in stacked conformations. It is shown that even if the intermolecular dispersion energy is the largest component of the total interaction energy, some other contributions play a non negligible role. In particular the electrostatic dipole-dipole interaction and the charge transfer from the nucleobase to the PCB are responsible for the relative orientation of the monomers in the complexes. In addition, the charge transfer tends to flatten the PCB, which could therefore intercalate more easily between DNA base pairs. From these seminal results, we predict that PCB could intercalate completely between two base pairs, preferably between Guanine:Cytosine pairs.
Figure
Molecular orbital interaction diagram of stacked PCB77 and Adenine.  相似文献   

4.
Protein-protein interactions play fundamental roles in physiological and pathological biological processes. The characterization of the structural determinants of protein-protein recognition represents an important step for the development of molecular entities able to modulate these interactions. We have recently found that IκB-α (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha) blocks the HIV-1 expression and replication in a NF-κB-independent manner by directly binding to the virus-encoded Tat transactivator. Here, we report the evaluation of the entity of binding of IκB-α to Tat through in vitro Surface Plasmon Resonance assay. Moreover, by designing and characterizing a set of peptides of the C-terminus region of IκB-α, we show that the peptide corresponding to the IκB-α sequence 262-287 was able to bind to Tat with high affinity (300 nM). The characterization of a number of IκB-α-based peptides also provided insights into their intrinsic folding properties. These findings have been corroborated by mutagenesis studies on the full-length IκB-α, which unveil that different IκB-α residues are involved in NF-κB or Tat recognition.  相似文献   

5.
6.
载脂蛋白B mRNA编辑催化多肽样(apolipoprotein B mRNA-editing catalytic polypeptide-like,APOBEC)蛋白是一组胞嘧啶脱氨基酶,具有天然的抗病毒活性,对多种病毒具有抑制作用,特别是逆转录病毒. APOBEC3蛋白能够抑制人类免疫缺陷病毒(HIV-1)的感染,其中APOBEC3G和APOBEC3F的作用最强. APOBEC3G能够通过胞嘧啶脱氨基作用和非胞嘧啶脱氨基作用抑制病毒感染. HIV-1病毒感染因子(Vif) 蛋白主要经泛素-蛋白酶体途径介导APOBEC3G降解,从而拮抗其抗病毒作用. APOBEC3G和Vif之间相互作用的研究对于寻求新的抗HIV治疗靶点具有重要意义.  相似文献   

7.
8.
Zhou X  Evans SL  Han X  Liu Y  Yu XF 《PloS one》2012,7(3):e33495
Human immunodeficiency virus-1 (HIV-1) viral infectivity factor (Vif) is essential for viral replication because of its ability to eliminate the host's antiviral response to HIV-1 that is mediated by the APOBEC3 family of cellular cytidine deaminases. Vif targets these proteins, including APOBEC3G, for polyubiquitination and subsequent proteasome-mediated degradation via the formation of a Cullin5-ElonginB/C-based E3 ubiquitin ligase. Determining how the cellular components of this E3 ligase complex interact with Vif is critical to the intelligent design of new antiviral drugs. However, structural studies of Vif, both alone and in complex with cellular partners, have been hampered by an inability to express soluble full-length Vif protein. Here we demonstrate that a newly identified host regulator of Vif, core-binding factor-beta (CBFβ), interacts directly with Vif, including various isoforms and a truncated form of this regulator. In addition, carboxyl-terminal truncations of Vif lacking the BC-box and cullin box motifs were sufficient for CBFβ interaction. Furthermore, association of Vif with CBFβ, alone or in combination with Elongin B/C (EloB/C), greatly increased the solubility of full-length Vif. Finally, a stable complex containing Vif-CBFβ-EloB/C was purified in large quantity and shown to bind purified Cullin5 (Cul5). This efficient strategy for purifying Vif-Cul5-CBFβ-EloB/C complexes will facilitate future structural and biochemical studies of Vif function and may provide the basis for useful screening approaches for identifying novel anti-HIV drug candidates.  相似文献   

9.
Human apolipoprotein-B mRNA-editing catalytic polypeptide-like 3G (A3G) is a cytidine deaminase that restricts retroviruses, endogenous retro-elements and DNA viruses. A3G plays a key role in the anti-HIV-1 innate cellular immunity. The HIV-1 Vif protein counteracts A3G mainly by leading A3G towards the proteosomal machinery and by direct inhibition of its enzymatic activity. Both activities involve direct interaction between Vif and A3G. Disrupting the interaction between A3G and Vif may rescue A3G antiviral activity and inhibit HIV-1 propagation. Here, mapping the interaction sites between A3G and Vif by peptide array screening revealed distinct regions in Vif important for A3G binding, including the N-terminal domain (NTD), C-terminal domain (CTD) and residues 83–99. The Vif-binding sites in A3G included 12 different peptides that showed strong binding to either full-length Vif, Vif CTD or both. Sequence similarity was found between Vif-binding peptides from the A3G CTD and NTD. A3G peptides were synthesized and tested for their ability to counteract Vif action. A3G 211–225 inhibited HIV-1 replication in cell culture and impaired Vif dependent A3G degradation. In vivo co-localization of full-length Vif with A3G 211–225 was demonstrated by use of FRET. This peptide has the potential to serve as an anti-HIV-1 lead compound. Our results suggest a complex interaction between Vif and A3G that is mediated by discontinuous binding regions with different affinities.  相似文献   

10.
To create novel HIV-1 protease (HIV PR) inhibitors, we have extended our investigations of the N→CO interaction as a moiety that reproduces electrostatic properties of the transition state of peptidolysis. Consequently, we prepared a series of compounds with an unusual hydrazino-urea core. In polar protic media, these adopt solely a cyclic constitution displaying the interaction on one side of the molecule while offering a urea moiety on the opposite side meant to hydrogen-bond with the enzyme flaps. Each inhibitor candidate was obtained via a key series of three synthetic steps employing carbonyl-di-imidazole (CDI). It was thus possible to efficiently fuse two independent building blocks, a hydrazine and a protected aminoaldehyde in a convergent manner. NMR and UV analysis proved that all compounds, when dissolved in polar protic media, existed exclusively in the cyclic constitution exhibiting the N→CO interaction. In total, five inhibitor candidates were tested with HIV PR for their potency. The one carrying the least bulk in peripheral substituents showed the highest activity. Its very low molecular weight (365 g/mol) holds great promise for future improvements in affinity without violating Lipinski’s rule of remaining within the limit of 500 g/mol.  相似文献   

11.
In all organisms, the large ribosomal subunit contains multiple copies of a flexible protein, the so-called ‘stalk’. The C-terminal domain (CTD) of the stalk interacts directly with the translational GTPase factors, and this interaction is required for factor-dependent activity on the ribosome. Here we have determined the structure of a complex of the CTD of the archaeal stalk protein aP1 and the GDP-bound archaeal elongation factor aEF1α at 2.3 Å resolution. The structure showed that the CTD of aP1 formed a long extended α-helix, which bound to a cleft between domains 1 and 3 of aEF1α, and bridged these domains. This binding between the CTD of aP1 and the aEF1α•GDP complex was formed mainly by hydrophobic interactions. The docking analysis showed that the CTD of aP1 can bind to aEF1α•GDP located on the ribosome. An additional biochemical assay demonstrated that the CTD of aP1 also bound to the aEF1α•GTP•aminoacyl-tRNA complex. These results suggest that the CTD of aP1 interacts with aEF1α at various stages in translation. Furthermore, phylogenetic perspectives and functional analyses suggested that the eukaryotic stalk protein also interacts directly with domains 1 and 3 of eEF1α, in a manner similar to the interaction of archaeal aP1 with aEF1α.  相似文献   

12.
Mitosis is a highly regulated process that allows the equal distribution of the genetic material to the daughter cells. Chromosome segregation requires the formation of a bipolar mitotic spindle and assembly of a multi-protein structure termed the kinetochore to mediate attachments between condensed chromosomes and spindle microtubules. In budding yeast, a single microtubule attaches to each kinetochore, necessitating robustness and processivity of this kinetochore–microtubule attachment. The yeast kinetochore-localized Dam1 complex forms a direct interaction with the spindle microtubule. In vitro, the Dam1 complex assembles as a ring around microtubules and couples microtubule depolymerization with cargo movement. However, the subunit organization within the Dam1 complex, its higher-order oligomerization and how it interacts with microtubules remain under debate. Here, we used chemical cross-linking and mass spectrometry to define the architecture and subunit organization of the Dam1 complex. This work reveals that both the C termini of Duo1 and Dam1 subunits interact with the microtubule and are critical for microtubule binding of the Dam1 complex, placing Duo1 and Dam1 on the inside of the ring structure. Integrating this information with available structural data, we provide a coherent model for how the Dam1 complex self-assembles around microtubules.  相似文献   

13.
14.
Human immunodeficiency virus type 1 (HIV-1) Vif requires core binding factor β (CBF-β) to degrade the host APOBEC3 restriction factors. Although a minimum domain and certain amino acids of HIV-1 Vif, including hydrophobic residues at the N-terminal, have been identified as critical sites for binding with CBF-β, other regions that potentially mediate this interaction need to be further investigated. Here, we mapped two new regions of HIV-1 Vif that are required for interaction with CBF-β by generating a series of single-site or multiple-site Vif mutants and testing their effect on the suppression of APOBEC3G (A3G) and APOBEC3F (A3F). A number of the mutants, including G84A/SIEW86-89AAAA (84/86–89), E88A/W89A (88/89), G84A, W89A, L106S and I107S in the 84GxSIEW89 and L102ADQLI107 regions, affected Vif function by disrupting CBF-β binding. These Vif mutants also had altered interactions with CUL5, since CBF-β is known to facilitate the binding of Vif to CUL5. We further showed that this effect was not due to misfolding or conformational changes in Vif, as the mutants still maintained their interactions with other factors such as ElonginB, A3G and A3F. Notably, G84D and D104A had stronger effects on the Vif-CUL5 interaction than on the Vif-CBF-β interaction, indicating that they mainly influenced the CUL5 interaction and implying that the interaction of Vif with CUL5 contributes to the binding of Vif to CBF-β. These new binding interfaces with CBF-β in HIV-1 Vif provide novel targets for the development of HIV-1 inhibitors.  相似文献   

15.
Summary 1. Alterations of brain microvasculature and the disruption of the blood–brain barrier (BBB) integrity are commonly associated with human immunodeficiency virus type 1 (HIV-1) infection. These changes are most frequently found in human immunodeficiency virus-related encephalitis (HIVE) and in human immunodeficiency virus-associated dementia (HAD).2. It has been hypothesized that the disruption of the BBB occurs early in the course of HIV-1 infection and can be responsible for HIV-1 entry into the CNS.3. The current review discusses the mechanisms of injury to brain endothelial cells and alterations of the BBB integrity in HIV-infection with focus on the vascular effects of HIV Tat protein. In addition, this review describes the mechanisms of the BBB disruption due to HIV-1 or Tat protein interaction with selected risk factors for HIV infection, such as substance abuse and aging.This revised article was published online in May 2005 with a February 2005 cover date.  相似文献   

16.
17.
In previous literature, it was found that the activity of New Delhi Metallo-β-lactamase-1 (NDM-1) was inhibited by 2,6-dipicolinic acid (DPA) derivatives. To identify the mechanism of interaction between the inhibitors and NDM-1, molecular dynamics simulations were performed for the complex systems. Via the molecular modelling, inhibitors were found to be able bind to the region of catalytic activity of NDM-1. However, the detailed binding sites of the inhibitors differed with their structures. It was determined that His189, Lys211, Met248, Ser249, His250, and Ser251 are key residues for the binding of inhibitor 36 with NDM-1, and Asp124 is the only critical residue in the NDM-1-DPA complex. Furthermore, because of the interaction of the benzene ring in inhibitor 36 with the side chain of Lys211, inhibitor 36 can form 4 strong hydrogen bonds with protein. For the NDM-1-DPA complex, owing to the absence of the aniline group, DPA can only form a weak interaction with the residues around the binding site of NDM-1, except for Asp124, leading to a weaker inhibitory activity. Therefore, we believe that the strong interaction of the inhibitor with Lys211 results in effective inhibition, and the aniline group is the element required for the inhibitory activity.  相似文献   

18.
Therapeutic treatment of AIDS is recently characterized by a crescent effort towards the identification of multiple ligands able to target different steps of HIV-1 life cycle. Taking into consideration our previously obtained SAR information and combining some important chemical structural features we report herein the synthesis of novel benzyl-indole derivatives as anti-HIV agents. Through this work we identified new dual target small molecules able to inhibit both IN-LEDGF/p75 interaction and the IN strand-transfer step considered as two crucial phases of viral life cycle.  相似文献   

19.
Trans-translation is a process which switches the synthesis of a polypeptide chain encoded by a nonstop messenger RNA to the mRNA-like domain of a transfer-messenger RNA (tmRNA). It is used in bacterial cells for rescuing the ribosomes arrested during translation of damaged mRNA and directing this mRNA and the product polypeptide for degradation. The molecular basis of this process is not well understood. Earlier, we developed an approach that allowed isolation of tmRNA–ribosomal complexes arrested at a desired step of tmRNA passage through the ribosome. We have here exploited it to examine the tmRNA structure using chemical probing and cryo-electron microscopy tomography. Computer modeling has been used to develop a model for spatial organization of the tmRNA inside the ribosome at different stages of trans-translation.  相似文献   

20.
Recruitment of Mad1–Mad2 complexes to unattached kinetochores is a central event in spindle checkpoint signaling. Despite its importance, the mechanism that recruits Mad1–Mad2 to kinetochores is unclear. In this paper, we show that MAD-1 interacts with BUB-1 in Caenorhabditis elegans. Mutagenesis identified specific residues in a segment of the MAD-1 coiled coil that mediate the BUB-1 interaction. In addition to unattached kinetochores, MAD-1 localized between separating meiotic chromosomes and to the nuclear periphery. Mutations in the MAD-1 coiled coil that selectively disrupt interaction with BUB-1 eliminated MAD-1 localization to unattached kinetochores and between meiotic chromosomes, both of which require BUB-1, and abrogated checkpoint signaling. The identified MAD-1 coiled-coil segment interacted with a C-terminal region of BUB-1 that contains its kinase domain, and mutations in this region prevented MAD-1 kinetochore targeting independently of kinase activity. These results delineate an interaction between BUB-1 and MAD-1 that targets MAD-1–MAD-2 complexes to kinetochores and is essential for spindle checkpoint signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号