首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Branco T  Häusser M 《Neuron》2011,69(5):885-892
Cortical pyramidal neurons receive thousands of synaptic inputs arriving at different dendritic locations with varying degrees of temporal synchrony. It is not known if different locations along single cortical dendrites integrate excitatory inputs in different ways. Here we have used two-photon glutamate uncaging and compartmental modeling to reveal a gradient of nonlinear synaptic integration in basal and apical oblique dendrites of cortical pyramidal neurons. Excitatory inputs to the proximal dendrite sum linearly and require precise temporal coincidence for effective summation, whereas distal inputs are amplified with high gain and integrated over broader time windows. This allows distal inputs to overcome their electrotonic disadvantage, and become surprisingly more effective than proximal inputs at influencing action potential output. Thus, single dendritic branches can already exhibit nonuniform synaptic integration, with the computational strategy shifting from temporal coding to rate coding along the dendrite.  相似文献   

2.
In vivo, cortical pyramidal cells are bombarded by asynchronous synaptic input arising from ongoing network activity. However, little is known about how such ‘background’ synaptic input interacts with nonlinear dendritic mechanisms. We have modified an existing model of a layer 5 (L5) pyramidal cell to explore how dendritic integration in the apical dendritic tuft could be altered by the levels of network activity observed in vivo. Here we show that asynchronous background excitatory input increases neuronal gain and extends both temporal and spatial integration of stimulus-evoked synaptic input onto the dendritic tuft. Addition of fast and slow inhibitory synaptic conductances, with properties similar to those from dendritic targeting interneurons, that provided a ‘balanced’ background configuration, partially counteracted these effects, suggesting that inhibition can tune spatio-temporal integration in the tuft. Excitatory background input lowered the threshold for NMDA receptor-mediated dendritic spikes, extended their duration and increased the probability of additional regenerative events occurring in neighbouring branches. These effects were also observed in a passive model where all the non-synaptic voltage-gated conductances were removed. Our results show that glutamate-bound NMDA receptors arising from ongoing network activity can provide a powerful spatially distributed nonlinear dendritic conductance. This may enable L5 pyramidal cells to change their integrative properties as a function of local network activity, potentially allowing both clustered and spatially distributed synaptic inputs to be integrated over extended timescales.  相似文献   

3.
GABA (γ-amino butyric acid) is an inhibitory neurotransmitter in the adult brain that can mediate depolarizing responses during development or after neuropathological insults. Under which conditions GABAergic membrane depolarizations are sufficient to impose excitatory effects is hard to predict, as shunting inhibition and GABAergic effects on spatiotemporal filtering of excitatory inputs must be considered. To evaluate at which reversal potential a net excitatory effect was imposed by GABA (EGABAThr), we performed a detailed in-silico study using simple neuronal topologies and distinct spatiotemporal relations between GABAergic and glutamatergic inputs.These simulations revealed for GABAergic synapses located at the soma an EGABAThr close to action potential threshold (EAPThr), while with increasing dendritic distance EGABAThr shifted to positive values. The impact of GABA on AMPA-mediated inputs revealed a complex temporal and spatial dependency. EGABAThr depends on the temporal relation between GABA and AMPA inputs, with a striking negative shift in EGABAThr for AMPA inputs appearing after the GABA input. The spatial dependency between GABA and AMPA inputs revealed a complex profile, with EGABAThr being shifted to values negative to EAPThr for AMPA synapses located proximally to the GABA input, while for distally located AMPA synapses the dendritic distance had only a minor effect on EGABAThr. For tonic GABAergic conductances EGABAThr was negative to EAPThr over a wide range of gGABAtonic values. In summary, these results demonstrate that for several physiologically relevant situations EGABAThr is negative to EAPThr, suggesting that depolarizing GABAergic responses can mediate excitatory effects even if EGABA did not reach EAPThr.  相似文献   

4.
Gulledge AT  Stuart GJ 《Neuron》2003,37(2):299-309
Little is known about how GABAergic inputs interact with excitatory inputs under conditions that maintain physiological concentrations of intracellular anions. Using extracellular and gramicidin perforated-patch recording, we show that somatic and dendritic GABA responses in mature cortical pyramidal neurons are depolarizing from rest and can facilitate action potential generation when combined with proximal excitatory input. Dendritic GABA responses were excitatory regardless of timing, whereas somatic GABA responses were inhibitory when coincident with excitatory input but excitatory at earlier times. These excitatory actions of GABA occur even though the GABA reversal potential is below action potential threshold and largely uniform across the somato-dendritic axis, and arise when GABAergic inputs are temporally or spatially isolated from concurrent excitation. Our findings demonstrate that under certain circumstances GABA will have an excitatory role in synaptic integration in the cortex.  相似文献   

5.
It has been discovered recently in experiments that the dendritic integration of excitatory glutamatergic inputs and inhibitory GABAergic inputs in hippocampus CA1 pyramidal neurons obeys a simple arithmetic rule as , where , and are the respective voltage values of the summed somatic potential, the excitatory postsynaptic potential (EPSP) and the inhibitory postsynaptic potential measured at the time when the EPSP reaches its peak value. Moreover, the shunting coefficient in this rule only depends on the spatial location but not the amplitude of the excitatory or inhibitory input on the dendrite. In this work, we address the theoretical issue of how much the above dendritic integration rule can be accounted for using subthreshold membrane potential dynamics in the soma as characterized by the conductance-based integrate-and-fire (I&F) model. Then, we propose a simple I&F neuron model that incorporates the spatial dependence of the shunting coefficient by a phenomenological parametrization. Our analytical and numerical results show that this dendritic-integration-rule-based I&F (DIF) model is able to capture many experimental observations and it also yields predictions that can be used to verify the validity of the DIF model experimentally. In addition, the DIF model incorporates the dendritic integration effects dynamically and is applicable to more general situations than those in experiments in which excitatory and inhibitory inputs occur simultaneously in time. Finally, we generalize the DIF neuronal model to incorporate multiple inputs and obtain a similar dendritic integration rule that is consistent with the results obtained by using a realistic neuronal model with multiple compartments. This generalized DIF model can potentially be used to study network dynamics that may involve effects arising from dendritic integrations.  相似文献   

6.
7.
Recent findings demonstrate that synaptically released excitatory neurotransmitter glutamate activates receptors outside the immediate synaptic cleft and that the extent of such extrasynaptic actions is regulated by the high affinity glutamate uptake. The bulk of glutamate transporter systems are evenly distributed in the synaptic neuropil, and it is generally assumed that glutamate escaping the cleft affects pre- and postsynaptic receptors to a similar degree. To test whether this is indeed the case, we use quantitative electron microscopy and establish the stochastic pattern of glial occurrence in the three-dimensional (3D) vicinity of two common types of excitatory central synapses, stratum radiatum synapses in hippocampus and parallel fiber synapses in cerebellum. We find that the occurrence of glia postsynaptically is strikingly higher (3-4-fold) than presynaptically, in both types of synapses. To address the functional consequences of this asymmetry, we simulate diffusion and transport of synaptically released glutamate in these two brain areas using a detailed 3D compartmental model of the extracellular space with glutamate transporters arranged unevenly, in accordance with the obtained experimental data. The results predict that glutamate escaping the synaptic cleft is 2-4 times more likely to activate presynaptic compared to postsynaptic receptors. Simulations also show that postsynaptic neuronal transporters (EAAT4 type) at dendritic spines of cerebellar Purkinje cells exaggerate this asymmetry further. Our data suggest that the perisynaptic environment of these common central synapses favors fast presynaptic feedback in the information flow while preserving the specificity of the postsynaptic input.  相似文献   

8.
Gonadotropin-releasing-hormone (GnRH) neurons form part of a central neural oscillator that controls sexual reproduction through intermittent release of the GnRH peptide. Activity of GnRH neurons, and by extension release of GnRH, has been proposed to reflect intrinsic properties and synaptic input of GnRH neurons. To study GnRH neurons, we used traditional electrophysiology and computational methods. These emerging methodologies enhance the elucidation of processing in GnRH neurons. We used dynamic current-clamping to understand how living GnRH somata process input from glutamate and GABA, two key neurotransmitters in the neuroendocrine hypothalamus. In order to study the impact of synaptic integration in dendrites and neuronal morphology, we have developed full-morphology models of GnRH neurons. Using dynamic clamping, we have demonstrated that small-amplitude glutamatergic currents can drive repetitive firing in GnRH neurons. Furthermore, application of simulated GABAergic synapses with a depolarized reversal potential have revealed two functional subpopulations of GnRH neurons: one population in which GABA chronically depolarizes membrane potential (without inducing action potentials) and a second population in which GABAergic excitation results in slow spiking. Finally, when AMPA-type and GABA-type simulated inputs are applied together, action potentials occur when the AMPA-type conductance occurs during the descending phase of GABAergic excitation and at the nadir of GABAergic inhibition. Compartmental computer models have shown that excitatory synapses at >300 microns from somtata are unable to drive spiking with purely passive dendrites. In models with active dendrites, distal synapses are more efficient at driving spiking than somatic inputs. We then used our models to extend the results from dynamic current clamping at GnRH somata to distribute synaptic inputs along the dendrite. We show that propagation delays for dendritic synapses alter synaptic integration in GnRH neurons by widening the temporal window of interaction for the generation of action potentials. Finally, we have shown that changes in dendrite morphology can modulate the output of GnRH neurons by altering the efficacy of action potential generation in response to after-depolarization potentials (ADPs). Taken together, the methodologies of dynamic current clamping and multi-compartmental modeling can make major contributions to the study of synaptic integration and structure-function relationships in hypothalamic GnRH neurons. Use of these methodological approaches will continue to provide keen insights leading to conceptual advances in our understanding of reproductive hormone secretion in normal and pathological physiology and open the door to understanding whether the mechanisms of pulsatile GnRH release are conserved across species.  相似文献   

9.
The back and forth of dendritic plasticity   总被引:2,自引:0,他引:2  
Williams SR  Wozny C  Mitchell SJ 《Neuron》2007,56(6):947-953
Synapses are located throughout the often-elaborate dendritic tree of central neurons. Hebbian models of plasticity require temporal association between synaptic input and neuronal output to produce long-term potentiation of excitatory transmission. Recent studies have highlighted how active dendritic spiking mechanisms control this association. Here, we review new work showing that associative synaptic plasticity can be generated without neuronal output and that the interplay between neuronal architecture and the active electrical properties of the dendritic tree regulates synaptic plasticity.  相似文献   

10.
Judkewitz B  Roth A  Häusser M 《Neuron》2006,50(2):180-183
It has been a longstanding challenge for experimentalists to manipulate precisely the spatial and temporal patterns of synaptic input to the dendritic tree in order to mimic activity occurring in the intact brain and determine their importance for synaptic integration. In this issue of Neuron, Losonczy and Magee have used rapid multisite two-photon uncaging of glutamate to define patterns of synaptic input on a submillisecond and micron scale to investigate the rules for summation of synaptic inputs in the fine oblique dendrites of pyramidal neurons.  相似文献   

11.
M.A. Rea  W.J. McBride 《Life sciences》1978,23(24):2355-2359
The effect of the x-irradiation-induced loss of cerebellar granule and stellate cells on the levels of glutamate, aspartate and GABA in regions of the rat cerebellum was determined. The level of glutamate was significantly lower in the neuron-depleted cerebellar cortex while GABA levels were higher than control values in the cerebellar cortex and white matter of the x-irradiated rats. Aspartate levels were not changed by x-irradiation in any cerebellar region. The data is discussed in terms of the proposed role of glutamate as the excitatory neurotransmitter released from granule cells.  相似文献   

12.
The paraventricular nucleus (PVN) of the hypothalamus is a central site known to modulate sympathetic outflow. Excitatory and inhibitory neurotransmitters within the PVN dictate final outflow. The goal of the present study was to examine the role of the interaction between the excitatory neurotransmitter glutamate and the inhibitory neurotransmitter GABA in the regulation of sympathetic activity. In alpha-chloralose- and urethane-anesthetized rats, microinjection of glutamate and N-methyl-D-aspartate (NMDA; 50, 100, and 200 pmol) into the PVN produced dose-dependent increases in renal sympathetic nerve activity, blood pressure, and heart rate. These responses were blocked by the NMDA receptor antagonist DL-2-amino-5-phosphonovaleric acid (AP-5). Microinjection of bicuculline, a GABA(A) receptor antagonist, into the PVN (50, 100, and 200 pmol) also produced significant, dose-dependent increases in renal sympathetic nerve activity, blood pressure, and heart rate; AP-5 also blocked these responses. Using microdialysis and HPLC/electrochemical detection techniques, we observed that bicuculline infusion into the PVN increased glutamate release. Using an in vitro hypothalamic slice preparation, we found that bicuculline increased the frequency of glutamate-mediated excitatory postsynaptic currents in PVN-rostral ventrolateral medullary projecting neurons, supporting a GABA(A)-mediated tonic inhibition of this excitatory input into these neurons. Together, these data indicate that 1) glutamate, via NMDA receptors, excites the presympathetic neurons within the PVN and increases sympathetic outflow and 2) this glutamate excitatory input is tonically inhibited by a GABA(A)-mediated mechanism.  相似文献   

13.
This paper describes the results of intracellular injections of radiolabelled neurotransmitters and transmitter precursor substances, including glutamate, GABA, aspartate, octopamine, tyramine, tryptophan, and choline, into cell bodies of identified excitatory and inhibitory neurons innervating lobster extensor musculature. The distributions and identities of radioactive substances appearing in axons were examined at various times following injection and in vitro incubation. Injected GABA and glutamate were found in appreciable quantities in both excitatory and inhibitory axons and migrated down axons at an estimated rate of between 16 and 22 mm/day at 12 degrees C, whereas the other substances tested were present in substantially smaller quantities and migrated at an estimated rate of less than 7.5 mm/day at 12 degrees C. Injected GABA, D-glutamate and L-glutamate accumulated proximal to ligatures tied around nerves, whereas neither octopamine nor aspartate accumulated proximal to ligatures. Since GABA is the transmitter substance released by inhibitory neurons and L-glutamate is thought to be released from excitatory nerve terminals, these results are consistent with the suggestion that amino acids serving as neurotransmitters are axonally transported. The specificity of axonal transport does not appear to be restricted to the cognate neurotransmitter, as indicated by the movement of L-glutamate in inhibitory axons and GABA in excitatory axons and of D-glutamate in both excitatory and inhibitory axons, but rather may be relaxed to include substances closely related to the neurotransmitter. Some restrictions, however, are apparently placed on axonal transport of small charged molecules in these neurons in that other substances tested migrated down nerves at a considerably slower rate.  相似文献   

14.
Temporal integration of input is essential to the accumulation of information in various cognitive and behavioral processes, and gradually increasing neuronal activity, typically occurring within a range of seconds, is considered to reflect such computation by the brain. Some psychological evidence suggests that temporal integration by the brain is nearly perfect, that is, the integration is non-leaky, and the output of a neural integrator is accurately proportional to the strength of input. Neural mechanisms of perfect temporal integration, however, remain largely unknown. Here, we propose a recurrent network model of cortical neurons that perfectly integrates partially correlated, irregular input spike trains. We demonstrate that the rate of this temporal integration changes proportionately to the probability of spike coincidences in synaptic inputs. We analytically prove that this highly accurate integration of synaptic inputs emerges from integration of the variance of the fluctuating synaptic inputs, when their mean component is kept constant. Highly irregular neuronal firing and spike coincidences are the major features of cortical activity, but they have been separately addressed so far. Our results suggest that the efficient protocol of information integration by cortical networks essentially requires both features and hence is heterotic.  相似文献   

15.
Magnusson AK  Park TJ  Pecka M  Grothe B  Koch U 《Neuron》2008,59(1):125-137
Central processing of acoustic cues is critically dependent on the balance between excitation and inhibition. This balance is particularly important for auditory neurons in the lateral superior olive, because these compare excitatory inputs from one ear and inhibitory inputs from the other ear to compute sound source location. By applying GABA(B) receptor antagonists during sound stimulation in vivo, it was revealed that these neurons adjust their binaural sensitivity through GABA(B) receptors. Using an in vitro approach, we then demonstrate that these neurons release GABA during spiking activity. Consequently, GABA differentially regulates transmitter release from the excitatory and inhibitory terminals via feedback to presynaptic GABA(B) receptors. Modulation of the synaptic input strength, by putative retrograde release of neurotransmitter, may enable these auditory neurons to rapidly adjust the balance between excitation and inhibition, and thus their binaural sensitivity, which could play an important role as an adaptation to various listening situations.  相似文献   

16.
Ganglion cells are the output neurons of the retina and their activity reflects the integration of multiple synaptic inputs arising from specific neural circuits. Patch clamp techniques, in voltage clamp and current clamp configurations, are commonly used to study the physiological properties of neurons and to characterize their synaptic inputs. Although the application of these techniques is highly informative, they pose various limitations. For example, it is difficult to quantify how the precise interactions of excitatory and inhibitory inputs determine response output. To address this issue, we used a modified current clamp technique, dynamic clamp, also called conductance clamp 1, 2, 3 and examined the impact of excitatory and inhibitory synaptic inputs on neuronal excitability. This technique requires the injection of current into the cell and is dependent on the real-time feedback of its membrane potential at that time. The injected current is calculated from predetermined excitatory and inhibitory synaptic conductances, their reversal potentials and the cell''s instantaneous membrane potential. Details on the experimental procedures, patch clamping cells to achieve a whole-cell configuration and employment of the dynamic clamp technique are illustrated in this video article. Here, we show the responses of mouse retinal ganglion cells to various conductance waveforms obtained from physiological experiments in control conditions or in the presence of drugs. Furthermore, we show the use of artificial excitatory and inhibitory conductances generated using alpha functions to investigate the responses of the cells.  相似文献   

17.
The time course of neurotransmitter in the synaptic cleft contributes substantially to the fast kinetics of synaptic signalling. Hippocampal mossy fibres (MFs), a well-characterised excitatory pathway from dentate granule cells to the hippocampus proper, form large glutamatergic synapses at branched spiny structures in CA3 pyramidal cell dendrites. To what extent transmission at these synapses is affected by retarded glutamate clearance from the large tortuous synaptic cleft is not known. Here, we propose a simple geometrical approximation representing the 'typical' geometry of thorny excrescences that form the tortuous cleft interface at a MF synapse. We then employ Monte Carlo simulations to monitor movements of 3000 individual glutamate molecules released within the cleft. The results predict that, in the absence of neuronal glutamate transporters, it should take approximately 10 ms for 50% and 60-70 ms for 90% of glutamate molecules to escape the MF synapse.  相似文献   

18.
Since the discovery of the major excitatory and inhibitory neurotransmitters and their receptors in the brain, many have deliberated over their likely structures and how these may relate to function. This was initially satisfied by the determination of the first amino acid sequences of the Cys-loop receptors that recognized acetylcholine, serotonin, GABA, and glycine, followed later by similar determinations for the glutamate receptors, comprising non-NMDA and NMDA subtypes. The last decade has seen a rapid advance resulting in the first structures of Cys-loop receptors, related bacterial and molluscan homologs, and glutamate receptors, determined down to atomic resolution. This now provides a basis for determining not just the complete structures of these important receptor classes, but also for understanding how various domains and residues interact during agonist binding, receptor activation, and channel opening, including allosteric modulation. This article reviews our current understanding of these mechanisms for the Cys-loop and glutamate receptor families.To understand how neurons communicate with each other requires a fundamental understanding of neurotransmitter receptor structure and function. Neurotransmitter-gated ion channels, also known as ionotropic receptors, are responsible for fast synaptic transmission. They decode chemical signals into electrical responses, thereby transmitting information from one neuron to another. Their suitability for this important task relies on their ability to respond very rapidly to the transient release of neurotransmitter to affect cell excitability.In the central nervous system (CNS), fast synaptic transmission results in two main effects: neuronal excitation and inhibition. For excitation, the principal neurotransmitter involved is glutamate, which interacts with ionotropic (integral ion channel) and metabotropic (second-messenger signaling) receptors. The ionotropic glutamate receptors are permeable to cations, which directly cause excitation. Acetylcholine and serotonin can also activate specific cation-selective ionotropic receptors to affect neuronal excitation. For controlling cell excitability, inhibition is important, and this is mediated by the neurotransmitters GABA and glycine, causing an increased flux of anions. GABA predominates as the major inhibitory transmitter throughout the CNS, whereas glycine is of greater importance in the spinal cord and brainstem. They both activate specific receptors—for GABA, there are ionotropic and metabotropic receptors, whereas for glycine, only ionotropic receptors are known to date.Together with acetylcholine- and serotonin-gated channels, GABA and glycine ionotropic receptors form the superfamily of Cys-loop receptors, which differs in many aspects from the superfamily of ionotropic glutamate receptors. Over the last two decades, our knowledge of the structure and function of ionotropic receptors has grown rapidly. In this article, we summarize our current understanding of the molecular operation of these receptors and how we can now begin to interpret the role of receptor structure in agonist binding, channel activation, and allosteric modulation of Cys-loop and glutamate receptor families. Further details on the regulation and trafficking of neurotransmitter receptors in synaptic structure and plasticity can be found in accompanying articles.  相似文献   

19.
Losonczy A  Magee JC 《Neuron》2006,50(2):291-307
Although radial oblique dendrites are a major synaptic input site in CA1 pyramidal neurons, little is known about their integrative properties. We have used multisite two-photon glutamate uncaging to deliver different spatiotemporal input patterns to single branches while simultaneously recording the uncaging-evoked excitatory postsynaptic potentials and local Ca2+ signals. Asynchronous input patterns sum linearly in spite of the spatial clustering and produce Ca2+ signals that are mediated by NMDA receptors (NMDARs). Appropriately timed and sized input patterns ( approximately 20 inputs within approximately 6 ms) produce a supralinear summation due to the initiation of a dendritic spike. The Ca2+ signals associated with synchronous input were larger and mediated by influx through both NMDARs and voltage-gated Ca2+ channels (VGCCs). The oblique spike is a fast Na+ spike whose duration is shaped by the coincident activation of NMDAR, VGCCs, and transient K+ currents. Our results suggest that individual branches can function as single integrative compartments.  相似文献   

20.
Neurons process information via integration of synaptic inputs from dendrites. Many experimental results demonstrate dendritic integration could be highly nonlinear, yet few theoretical analyses have been performed to obtain a precise quantitative characterization analytically. Based on asymptotic analysis of a two-compartment passive cable model, given a pair of time-dependent synaptic conductance inputs, we derive a bilinear spatiotemporal dendritic integration rule. The summed somatic potential can be well approximated by the linear summation of the two postsynaptic potentials elicited separately, plus a third additional bilinear term proportional to their product with a proportionality coefficient . The rule is valid for a pair of synaptic inputs of all types, including excitation-inhibition, excitation-excitation, and inhibition-inhibition. In addition, the rule is valid during the whole dendritic integration process for a pair of synaptic inputs with arbitrary input time differences and input locations. The coefficient is demonstrated to be nearly independent of the input strengths but is dependent on input times and input locations. This rule is then verified through simulation of a realistic pyramidal neuron model and in electrophysiological experiments of rat hippocampal CA1 neurons. The rule is further generalized to describe the spatiotemporal dendritic integration of multiple excitatory and inhibitory synaptic inputs. The integration of multiple inputs can be decomposed into the sum of all possible pairwise integration, where each paired integration obeys the bilinear rule. This decomposition leads to a graph representation of dendritic integration, which can be viewed as functionally sparse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号