首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kojic acid (KA), a well known tyrosinase inhibitor, has insufficient inhibitory activity and stability. We modified KA with amino acids and screened their tyrosinase inhibitory activity. Among them, kojic acid–phenylalanine amide (KA-F-NH2) showed the strongest inhibitory activity, which was maintained for over 3 months at 50 °C, and acted as a noncompetitive inhibitor as determined by kinetic analysis. It also exhibited dopachrome reducing activity. We also propose a new tyrosinase inhibition mechanism based on the docking simulation data.  相似文献   

2.
《Trends in microbiology》2023,31(3):254-269
The gut microbiota represents a ‘metabolic organ’ that can regulate human metabolism. Intact gut microbiota contributes to host homeostasis, whereas compositional perturbations, termed dysbiosis, are associated with a wide range of diseases. Recent evidence demonstrates that dysbiosis, and the accompanying loss of microbiota-derived metabolites, results in a substantial alteration of skeletal muscle metabolism. As an example, bile acids, produced in the liver and further metabolized by intestinal microbiota, are of considerable interest since they regulate several host metabolic pathways by activating nuclear receptors, including the farnesoid X receptor (FXR). Indeed, alteration of gut microbiota may lead to skeletal muscle atrophy via a bile acid–FXR pathway. This Review aims to suggest a new pathway that connects different mechanisms, involving the gut–muscle axis, that are often seen as unrelated, and, starting from preclinical studies, we hypothesize new strategies aimed at optimizing skeletal muscle functionality.  相似文献   

3.
A more convenient and facile approach for the synthesis and production of camptothecin–amino acids carbamate linkers, that can be used in the synthesis of bioconjugate peptides JF-10-81, JF-10-71, and other peptide analogs designed to target somatostatin receptors has been described.  相似文献   

4.
The ideal protein concept has allowed progress in defining requirements as well as the limiting order of amino acids in corn, soybean meal, and a corn–soybean meal mixture for growth of young chicks. Recent evidence suggests that glycine (or serine) is a key limiting amino acid in reduced protein [23% crude protein (CP) reduced to 16% CP] corn–soybean meal diets for broiler chicks. Research with sulfur amino acids has revealed that small excesses of cysteine are growth depressing in chicks fed methionine-deficient diets. Moreover, high ratios of cysteine:methionine impair utilization of the hydroxy analog of methionine, but not of methionine itself. A high level of dietary l-cysteine (2.5% or higher) is lethal for young chicks, but a similar level of dl-methionine, l-cystine or N-acetyl-l-cysteine causes no mortality. A supplemental dietary level of 3.0% l-cysteine (7× requirement) causes acute metabolic acidosis that is characterized by a striking increase in plasma sulfate and decrease in plasma bicarbonate. S-Methylmethionine, an analog of S-adenosylmethionine, has been shown to have choline-sparing activity, but it only spares methionine when diets are deficient in choline and(or) betaine. Creatine, or its precursor guanidinoacetic acid, can spare dietary arginine in chicks.  相似文献   

5.
Urinary amino acid analysis is typically done by cation-exchange chromatography followed by post-column derivatization with ninhydrin and UV detection. This method lacks throughput and specificity. Two recently introduced stable isotope ratio mass spectrometric methods promise to overcome those shortcomings. Using two blinded sets of urine replicates and a certified amino acid standard, we compared the precision and accuracy of gas chromatography/mass spectrometry (GC–MS) and liquid chromatography–tandem mass spectrometry (LC–MS/MS) of propyl chloroformate and iTRAQ® derivatized amino acids, respectively, to conventional amino acid analysis. The GC–MS method builds on the direct derivatization of amino acids in diluted urine with propyl chloroformate, GC separation and mass spectrometric quantification of derivatives using stable isotope labeled standards. The LC–MS/MS method requires prior urinary protein precipitation followed by labeling of urinary and standard amino acids with iTRAQ® tags containing different cleavable reporter ions distinguishable by MS/MS fragmentation. Means and standard deviations of percent technical error (%TE) computed for 20 amino acids determined by amino acid analyzer, GC–MS, and iTRAQ®–LC–MS/MS analyses of 33 duplicate and triplicate urine specimens were 7.27 ± 5.22, 21.18 ± 10.94, and 18.34 ± 14.67, respectively. Corresponding values for 13 amino acids determined in a second batch of 144 urine specimens measured in duplicate or triplicate were 8.39 ± 5.35, 6.23 ± 3.84, and 35.37 ± 29.42. Both GC–MS and iTRAQ®–LC–MS/MS are suited for high-throughput amino acid analysis, with the former offering at present higher reproducibility and completely automated sample pretreatment, while the latter covers more amino acids and related amines.  相似文献   

6.
7.
Amino acid conjugates of quinolone, metronidazole and sulfadiazine antibiotics were synthesized in good yields using benzotriazole methodology. All the conjugates were screened for their antibacterial activity using methods adapted from the Clinical and Laboratory Standards Institute. Antibiotic conjugates were tested for activity in four medically relevant organisms; Staphylococcus aureus (RN4220), Escherichia coli (DH5α), Pseudomonas aeruginosa (PAO1), and Bacillus subtilis (168). Several antibiotic conjugates show promising results against several of the strains screened.  相似文献   

8.
9.
10.
11.
Enediyne–peptide conjugates were designed with the aim to inhibit aminopeptidase N, a widespread ectoenzyme with a variety of functions, like protein digestion, inactivation of cytokines in the immune system and endogenous opioid peptides in the central nervous system. Enediyne moiety was embedded within the 12-membered ring with hydrophobic amino acid alanine, valine, leucine or phenylalanine used as carriers. Aromatic part of the enediyne bridging unit and the amino acid side chains were considered as pharmacophores for the binding to the aminopeptidase N (APN) active site. Additionally, the fused enediyne–amino acid “heads” were bound through a flexible linker to the l-lysine, an amino group donor. The synthesis included building the aromatic enediyne core at the C-terminal of amino acids and subsequent intramolecular N-alkylation. APN inhibition test revealed that the alanine-based derivative 9a inhibits the APN with IC50 of 34 ± 11 μM. Enediyne–alanine conjugate 12 missing the flexible linker was much less effective in the APN inhibition. These results show that enediyne-fused amino acids have potential as new pharmacophores in the design of APN inhibitors.  相似文献   

12.
The rapid activation of the mechanistic target of rapamycin complex-1 (mTORC1) by growth factors is increased by extracellular amino acids through yet-undefined mechanisms of amino acid transfer into endolysosomes. Because the endocytic process of macropinocytosis concentrates extracellular solutes into endolysosomes and is increased in cells stimulated by growth factors or tumor-promoting phorbol esters, we analyzed its role in amino acid–dependent activation of mTORC1. Here, we show that growth factor-dependent activation of mTORC1 by amino acids, but not glucose, requires macropinocytosis. In murine bone marrow–derived macrophages and murine embryonic fibroblasts stimulated with their cognate growth factors or with phorbol myristate acetate, activation of mTORC1 required an Akt-independent vesicular pathway of amino acid delivery into endolysosomes, mediated by the actin cytoskeleton. Macropinocytosis delivered small, fluorescent fluid-phase solutes into endolysosomes sufficiently fast to explain growth factor–mediated signaling by amino acids. Therefore, the amino acid–laden macropinosome is an essential and discrete unit of growth factor receptor signaling to mTORC1.  相似文献   

13.
Summary Brush border membrane vesicles (BBMV) were prepared from the gills of the marine mussel,Mytilus edulis. These membranes contained two distinct pathways for cotransport of Na+ and -neutral amino acids. The major pathway in mussel gill BBMV was the alanine-lysine (AK) pathway, which had a high affinity for alanine and for the cationic amino acid, lysine. The AK pathway was inhibited by nonpolar -neutral amino acids and cationic amino acids, but was not affected by -neutral amino acids or imino acids. The kinetics of lysine transport were consistent with a single saturable process, with aJ max of 550 pmol/mg-min and aK t of 5 m. The AK pathway did not have a strict requirement for Na+, and concentrative transport of lysine was seen in the presence of inwardly directed gradients of Li+ and K+, as well as Na+. Harmaline inhibited the transport of lysine in solutions containing either Na+ or K+. The alanine-proline (AP) pathway transported both alanine and proline in mussel gill BBMV. The AP pathway was strongly inhibited by nonpolar -neutral amino acids, proline, and -(methylamino)isobutyric acid (Me-AIB). The kinetics of proline transport were described by a single saturable process, with aJ max of 180 pmol/mg-min andK t of 4 m. In contrast to the AK pathway, the AP pathway appeared to have a strict requirement for Na+. Na+-activation experiments with lysine and proline revealed sigmoid kinetics, indicating that multiple Na+ ions are involved in the transport of these substrates. The transport of both lysine and proline was affected by membrane potential in a manner consistent with electrogenic transport.  相似文献   

14.
Resistance to anti-estrogen therapy is a major clinical concern in treatment of breast cancer. Estrogen-independent phosphorylation of estrogen receptor α, specifically on Ser167, is one of the contributing causes to development of resistance, and a prognostic marker for the disease. Here, we dissect the signaling pathways responsible for Ser167 phosphorylation. We report that the mTOR/S6K1 and MAPK/RSK contribute non-overlapping inputs into ERα activation via Ser167 phosphorylation. This cooperation may be targeted in breast cancer treatment by a combination of mTOR and MAPK inhibitors.  相似文献   

15.

Background  

In structural genomics, an important goal is the detection and classification of protein–protein interactions, given the structures of the interacting partners. We have developed empirical energy functions to identify native structures of protein–protein complexes among sets of decoy structures. To understand the role of amino acid diversity, we parameterized a series of functions, using a hierarchy of amino acid alphabets of increasing complexity, with 2, 3, 4, 6, and 20 amino acid groups. Compared to previous work, we used the simplest possible functional form, with residue–residue interactions and a stepwise distance-dependence. We used increased computational ressources, however, constructing 290,000 decoys for 219 protein–protein complexes, with a realistic docking protocol where the protein partners are flexible and interact through a molecular mechanics energy function. The energy parameters were optimized to correctly assign as many native complexes as possible. To resolve the multiple minimum problem in parameter space, over 64000 starting parameter guesses were tried for each energy function. The optimized functions were tested by cross validation on subsets of our native and decoy structures, by blind tests on series of native and decoy structures available on the Web, and on models for 13 complexes submitted to the CAPRI structure prediction experiment.  相似文献   

16.
Engineering antibodies to utilize non-canonical amino acids (NCAA) should greatly expand the utility of an already important biological reagent. In particular, introducing crosslinking reagents into antibody complementarity determining regions (CDRs) should provide a means to covalently crosslink residues at the antibody–antigen interface. Unfortunately, finding the optimum position for crosslinking two proteins is often a matter of iterative guessing, even when the interface is known in atomic detail. Computer-aided antibody design can potentially greatly restrict the number of variants that must be explored in order to identify successful crosslinking sites. We have therefore used Rosetta to guide the introduction of an oxidizable crosslinking NCAA, l-3,4-dihydroxyphenylalanine (l-DOPA), into the CDRs of the anti-protective antigen scFv antibody M18, and have measured crosslinking to its cognate antigen, domain 4 of the anthrax protective antigen. Computed crosslinking distance, solvent accessibility, and interface energetics were three factors considered that could impact the efficiency of l-DOPA-mediated crosslinking. In the end, 10 variants were synthesized, and crosslinking efficiencies were generally 10% or higher, with the best variant crosslinking to 52% of the available antigen. The results suggest that computational analysis can be used in a pipeline for engineering crosslinking antibodies. The rules learned from l-DOPA crosslinking of antibodies may also be generalizable to the formation of other crosslinked interfaces and complexes.  相似文献   

17.
TRIM5α is a potent anti-retroviral factor that interacts with viral capsid (CA) in a species-specific manner. Recently, we and others reported generation of two distinct HIV-1 CAs that effectively overcome rhesus TRIM5α-imposed species barrier. In this study, to directly compare the effect of different mutations in the two HIV-1 CAs on evasion from macaque TRIM5-restriction, we newly generated macaque-tropic HIV-1 (HIV-1mt) proviral clones carrying the distinct CAs in the same genomic backbone, and examined their replication abilities in macaque TRIM5-overexpressing human cells and in rhesus cells. Comparative analysis of amino acid sequences and homology modeling-based structures revealed that, while both CAs gained some mutated amino acids with similar physicochemical properties, their overall appearances of N-terminal domains were different. Experimentally, the two CAs exhibited incomplete TRIM5α-resistance relative to SIVmac239 CA and different degrees of susceptibility to various TRIM5 proteins. Finally, two HIV-1mt clones carrying a different combination of the CA mutations were found to grow to a comparable extent in established and primary rhesus cells. Our data show that there could be some distinct CA patterns to confer significant TRIM5-resistance on HIV-1.  相似文献   

18.
In order to discover a quercetin prodrug with improved bioavailability, we synthesized nine quercetin–amion acid conjugates and estimated their pharmacokinetic properties including water solubility, stability against chemical or enzymatic hydrolysis, and cell permeability. Among the synthesized quercetin prodrugs, quercetin–glutamic acid conjugate Qu-E (4g/5g) showed remarkable increases in water solubility, stability, and cell permeability compared with quercetin, which warrants further development as a quercetin prodrug.  相似文献   

19.
Incremental proofs demonstrate that miRNAs, the essential regulators of gene expression, are implicated in various biological procedures, including mammary development and milk synthesis. Here, the role of miR-574-5p in milk synthesis, apoptosis, and proliferation of goat mammary epithelial cells (GMECs) are explored without precedent, and the molecular mechanisms for the impacts are elucidated. Small RNA libraries were constructed using GMECs transfected with miR-574-5p mimics and negative control followed by sequencing via Solexa technology. Overall, 332 genes were distinguishingly expressed entre two libraries, with 74 genes upregulated and 258 genes downregulated. This approach revealed mitogen-activated protein kinase kinase kinase 9 (MAP3K9), an upstream activator of MAPK signaling, as a differentially expressed unigene. miR-574-5p targeted seed sequences of the MAP3K9 3′-untranslated region and suppressed its messenger RNA (mRNA) and protein levels, correspondingly. GMECs with miR-574-5p overexpression and MAP3K9 inhibition showed increased cell apoptosis and decreased cell proliferation resulting from sustained suppression of MAPK pathways, while MAP3K9 elevation manifested the opposite results. miR-574-5p repressed the phosphorylation of members of protein kinase B (AKT)–mammalian target of rapamycin pathway via downregulating MAP3K9 and AKT3, resulting in reducing the secretion of β-casein and triglycerides in GMECs. Finally, according to the constructed circular RNA (circRNA) libraries and bioinformatics prediction approach, we selected circ-016910 and found it acted as a sponge for miR-574-5p and blocked its relevant behaviors to undertake biological effects in GMECs. The circRNA–miRNA–mRNA network facilitates further probes on the function of miR-574-5p in mammary development and milk synthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号