首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 639 毫秒
1.
HLA B57 and the closely related HLA B5801 are over-represented among HIV-1 infected long-term nonprogressors (LTNPs). It has been suggested that this association between HLA B57/5801 and asymptomatic survival is a consequence of strong CTL responses against epitopes in the viral Gag protein. Moreover, CTL escape mutations in Gag would coincide with viral attenuation, resulting in low viral load despite evasion from immune control. In this study we compared HLA B57/5801 HIV-1 infected progressors and LTNPs for sequence variation in four dominant epitopes in Gag and their ability to generate CTL responses against these epitopes and the autologous escape variants. Prevalence and appearance of escape mutations in Gag epitopes and potential compensatory mutations were similar in HLA B57/5801 LTNPs and progressors. Both groups were also indistinguishable in the magnitude of CD8+ IFN-gamma responses directed against the wild-type or autologous escape mutant Gag epitopes in IFN-gamma ELISPOT analysis. Interestingly, HIV-1 variants from HLA B57/5801 LTNPs had much lower replication capacity than the viruses from HLA B57/5801 progressors, which did not correlate with specific mutations in Gag. In conclusion, the different clinical course of HLA B57/5801 LTNPs and progressors was not associated with differences in CTL escape mutations or CTL activity against epitopes in Gag but rather with differences in HIV-1 replication capacity.  相似文献   

2.
HIV-1 mutations, which reduce or abolish CTL responses against virus-infected cells, are frequently selected in acute and chronic HIV infection. Among population HIV-1 sequences, immune selection is evident as human leukocyte antigen (HLA) allele-associated substitutions of amino acids within or near CD8 T-cell epitopes. In these cases, the non-adapted epitope is susceptible to immune recognition until an escape mutation renders the epitope less immunogenic. However, several population-based studies have independently identified HLA-associated viral changes, which lead to the formation of a new T-cell epitope, suggesting that the immune responses that these variants or 'neo-epitopes' elicit provide an evolutionary advantage to the virus rather than the host. Here, we examined the functional characteristics of eight CD8 T-cell responses that result from viral adaptation in 125 HLA-genotyped individuals with chronic HIV-1 infection. Neo-epitopes included well-characterized immunodominant epitopes restricted by common HLA alleles, and in most cases the T-cell responses against the neo-epitope showed significantly greater functional avidity and higher IFNγ production than T cells for non-adapted epitopes, but were not more cytotoxic. Neo-epitope formation and emergence of cognate T-cell response coincident with a rise in viral load was then observed in vivo in an acutely infected individual. These findings show that HIV-1 adaptation not only abrogates the immune recognition of early targeted epitopes, but may also increase immune recognition to other epitopes, which elicit immunodominant but non-protective T-cell responses. These data have implications for immunodominance associated with polyvalent vaccines based on the diversity of chronic HIV-1 sequences.  相似文献   

3.
Deep sequencing technologies have the potential to transform the study of highly variable viral pathogens by providing a rapid and cost-effective approach to sensitively characterize rapidly evolving viral quasispecies. Here, we report on a high-throughput whole HIV-1 genome deep sequencing platform that combines 454 pyrosequencing with novel assembly and variant detection algorithms. In one subject we combined these genetic data with detailed immunological analyses to comprehensively evaluate viral evolution and immune escape during the acute phase of HIV-1 infection. The majority of early, low frequency mutations represented viral adaptation to host CD8+ T cell responses, evidence of strong immune selection pressure occurring during the early decline from peak viremia. CD8+ T cell responses capable of recognizing these low frequency escape variants coincided with the selection and evolution of more effective secondary HLA-anchor escape mutations. Frequent, and in some cases rapid, reversion of transmitted mutations was also observed across the viral genome. When located within restricted CD8 epitopes these low frequency reverting mutations were sufficient to prime de novo responses to these epitopes, again illustrating the capacity of the immune response to recognize and respond to low frequency variants. More importantly, rapid viral escape from the most immunodominant CD8+ T cell responses coincided with plateauing of the initial viral load decline in this subject, suggestive of a potential link between maintenance of effective, dominant CD8 responses and the degree of early viremia reduction. We conclude that the early control of HIV-1 replication by immunodominant CD8+ T cell responses may be substantially influenced by rapid, low frequency viral adaptations not detected by conventional sequencing approaches, which warrants further investigation. These data support the critical need for vaccine-induced CD8+ T cell responses to target more highly constrained regions of the virus in order to ensure the maintenance of immunodominant CD8 responses and the sustained decline of early viremia.  相似文献   

4.
During acute human immunodeficiency virus type 1 (HIV-1) infection, early host cellular immune responses drive viral evolution. The rates and extent of these mutations, however, remain incompletely characterized. In a cohort of 98 individuals newly infected with HIV-1 subtype B, we longitudinally characterized the rates and extent of HLA-mediated escape and reversion in Gag, Pol, and Nef using a rational definition of HLA-attributable mutation based on the analysis of a large independent subtype B data set. We demonstrate rapid and dramatic HIV evolution in response to immune pressures that in general reflect established cytotoxic T-lymphocyte (CTL) response hierarchies in early infection. On a population level, HLA-driven evolution was observed in approximately 80% of published CTL epitopes. Five of the 10 most rapidly evolving epitopes were restricted by protective HLA alleles (HLA-B*13/B*51/B*57/B*5801; P = 0.01), supporting the importance of a strong early CTL response in HIV control. Consistent with known fitness costs of escape, B*57-associated mutations in Gag were among the most rapidly reverting positions upon transmission to non-B*57-expressing individuals, whereas many other HLA-associated polymorphisms displayed slow or negligible reversion. Overall, an estimated minimum of 30% of observed substitutions in Gag/Pol and 60% in Nef were attributable to HLA-associated escape and reversion events. Results underscore the dominant role of immune pressures in driving early within-host HIV evolution. Dramatic differences in escape and reversion rates across codons, genes, and HLA restrictions are observed, highlighting the complexity of viral adaptation to the host immune response.  相似文献   

5.
Strong statistical associations between polymorphisms in HIV-1 population sequences and carriage of HLA class I alleles have been widely used to identify possible sites of CD8 T cell immune selection in vivo. However, there have been few attempts to prospectively and systematically test these genetic hypotheses arising from population-based studies at a cellular, functional level. We assayed CD8 T cell epitope-specific IFN-γ responses in 290 individuals from the same cohort, which gave rise to 874 HLA-HIV associations in genetic analyses, taking into account autologous viral sequences and individual HLA genotypes. We found immunological evidence for 58% of 374 associations tested as sites of primary immune selection and identified up to 50 novel HIV-1 epitopes using this reverse-genomics approach. Many HLA-adapted epitopes elicited equivalent or higher-magnitude IFN-γ responses than did the nonadapted epitopes, particularly in Nef. At a population level, inclusion of all of the immunoreactive variant CD8 T cell epitopes in Gag, Pol, Nef, and Env suggested that HIV adaptation leads to an inflation of Nef-directed immune responses relative to other proteins. We concluded that HLA-HIV associations mark viral epitopes subject to CD8 T cell selection. These results can be used to guide functional studies of specific epitopes and escape mutations, as well as to test, train, and evaluate analytical models of viral escape and fitness. The inflation of Nef and HLA-adapted variant responses may have negative effects on natural and vaccine immunity against HIV and, therefore, has implications for diversity coverage approaches in HIV vaccine design.  相似文献   

6.
7.
The ability of HIV-1-specific CD8(+) T cell responses to recognize epitope variants resulting from viral sequence variation in vivo may affect the ease with which HIV-1 can escape T cell control and impact on the rate of disease progression in HIV-1-infected humans. Here, we studied the functional cross-reactivity of CD8 responses to HIV-1 epitopes restricted by HLA class I alleles associated with differential prognosis of infection. We show that the epitope-specific responses exhibiting the most efficient cross-recognition of amino acid-substituted variants were those strongly associated with delayed progression to disease. Not all epitopes restricted by the same HLA class I allele showed similar variant cross-recognition efficiency, consistent with the hypothesis that the reported associations between particular HLA class I alleles and rate of disease progression may be due to the quality of responses to certain "critical" epitopes. Irrespective of their efficiency of functional cross-recognition, CD8(+) T cells of all HIV-1 epitope specificities examined showed focused TCR usage. Furthermore, interpatient variability in variant cross-reactivity correlated well with use of different dominant TCR Vbeta families, suggesting that flexibility is not conferred by the overall clonal breadth of the response but instead by properties of the dominant TCR(s) used for epitope recognition. A better understanding of the features of T cell responses associated with long-term control of viral replication should facilitate rational vaccine design.  相似文献   

8.
The sequence diversity of human immunodeficiency virus type 1 (HIV-1) represents a major obstacle to the development of an effective vaccine, yet the forces impacting the evolution of this pathogen remain unclear. To address this issue we assessed the relationship between genome-wide viral evolution and adaptive CD8+ T-cell responses in four clade B virus-infected patients studied longitudinally for as long as 5 years after acute infection. Of the 98 amino acid mutations identified in nonenvelope antigens, 53% were associated with detectable CD8+ T-cell responses, indicative of positive selective immune pressures. An additional 18% of amino acid mutations represented substitutions toward common clade B consensus sequence residues, nine of which were strongly associated with HLA class I alleles not expressed by the subjects and thus indicative of reversions of transmitted CD8 escape mutations. Thus, nearly two-thirds of all mutations were attributable to CD8+ T-cell selective pressures. A closer examination of CD8 escape mutations in additional persons with chronic disease indicated that not only did immune pressures frequently result in selection of identical amino acid substitutions in mutating epitopes, but mutating residues also correlated with highly polymorphic sites in both clade B and C viruses. These data indicate a dominant role for cellular immune selective pressures in driving both individual and global HIV-1 evolution. The stereotypic nature of acquired mutations provides support for biochemical constraints limiting HIV-1 evolution and for the impact of CD8 escape mutations on viral fitness.  相似文献   

9.
Defining the components of an HIV immunogen that could induce effective CD8+ T cell responses is critical to vaccine development. We addressed this question by investigating the viral targets of CD8+ T cells that potently inhibit HIV replication in vitro, as this is highly predictive of virus control in vivo. We observed broad and potent ex vivo CD8+ T cell-mediated viral inhibitory activity against a panel of HIV isolates among viremic controllers (VC, viral loads <5000 copies/ml), in contrast to unselected HIV-infected HIV Vaccine trials Network (HVTN) participants. Viral inhibition of clade-matched HIV isolates was strongly correlated with the frequency of CD8+ T cells targeting vulnerable regions within Gag, Pol, Nef and Vif that had been identified in an independent study of nearly 1000 chronically infected individuals. These vulnerable and so-called “beneficial” regions were of low entropy overall, yet several were not predicted by stringent conservation algorithms. Consistent with this, stronger inhibition of clade-matched than mismatched viruses was observed in the majority of subjects, indicating better targeting of clade-specific than conserved epitopes. The magnitude of CD8+ T cell responses to beneficial regions, together with viral entropy and HLA class I genotype, explained up to 59% of the variation in viral inhibitory activity, with magnitude of the T cell response making the strongest unique contribution. However, beneficial regions were infrequently targeted by CD8+ T cells elicited by vaccines encoding full-length HIV proteins, when the latter were administered to healthy volunteers and HIV-positive ART-treated subjects, suggesting that immunodominance hierarchies undermine effective anti-HIV CD8+ T cell responses. Taken together, our data support HIV immunogen design that is based on systematic selection of empirically defined vulnerable regions within the viral proteome, with exclusion of immunodominant decoy epitopes that are irrelevant for HIV control.  相似文献   

10.
HLA class I-mediated selection of immune escape mutations in functionally important Gag epitopes may partly explain slower disease progression in HIV-1-infected individuals with protective HLA alleles. To investigate the impact of Gag function on disease progression, the replication capacities of viruses encoding Gag-protease from 60 individuals in early HIV-1 subtype C infection were assayed in an HIV-1-inducible green fluorescent protein reporter cell line and were correlated with subsequent disease progression. Replication capacities did not correlate with viral load set points (P = 0.37) but were significantly lower in individuals with below-median viral load set points (P = 0.03), and there was a trend of correlation between lower replication capacities and lower rates of CD4 decline (P = 0.09). Overall, the proportion of host HLA-specific Gag polymorphisms in or adjacent to epitopes was negatively associated with replication capacities (P = 0.04), but host HLA-B-specific polymorphisms were associated with higher viral load set points (P = 0.01). Further, polymorphisms associated with host-specific protective HLA alleles were linked with higher viral load set points (P = 0.03). These data suggest that transmission or early HLA-driven selection of Gag polymorphisms results in reduced early cytotoxic T-lymphocyte (CTL) responses and higher viral load set points. In support of the former, 46% of individuals with nonprotective alleles harbored a Gag polymorphism exclusively associated with a protective HLA allele, indicating a high rate of their transmission in sub-Saharan Africa. Overall, HIV disease progression is likely to be affected by the ability to mount effective Gag CTL responses as well as the replication capacity of the transmitted virus.  相似文献   

11.
Polymorphism in the HLA region of a chromosome is the major source of host genetic variability in HIV-1 outcome, but there is limited understanding of the mechanisms underlying the beneficial effect of protective class I alleles such as HLA-B57, -B27, and -B51. Taking advantage of a unique cohort infected with clade B' HIV-1 through contaminated blood, in which many variables such as the length of infection, the infecting viral strain, and host genetic background are controlled, we performed a comprehensive study to understand HLA-B51-associated HIV-1 control. We focused on the T cell responses against three dominant HLA-B51-restricted epitopes: Gag327-345(NI9) NANPDCKTI, Pol743-751(LI9) LPPVVAKEI, and Pol283-289(TI8) TAFTIPSI. Mutations in all three dominant epitopes were significantly associated with HLA-B51 in the cohort. A clear hierarchy in selection of epitope mutations was observed through epitope sequencing. L743I in position 1 of epitope LI9 was seen in most B51(+) individuals, followed by V289X in position 8 of the TI8, and then, A328S, in position 2 of the NI9 epitope, was also seen in some B51(+) individuals. Good control of viral load and higher CD4(+) counts were significantly associated with at least one detectable T cell response to unmutated epitopes, whereas lower CD4(+) counts and higher viral loads were observed in patients who had developed escape mutations in all three epitopes or who lacked T cell responses specific to these epitope(s). We propose that patients with HLA-B51 benefit from having multiple layers of effective defense against the development of immune escape mutations.  相似文献   

12.
The importance of HLA class I-restricted CD8 T-cell responses in the control of human immunodeficiency virus (HIV) infection is generally accepted. While several studies have shown an association of certain HLA class I alleles with slower disease progression, it is not fully established whether this effect is mediated by HIV-specific CD8 T-cell responses restricted by these alleles. In order to study the influence of the HLA class I alleles on the HIV-specific CD8 T-cell response and on viral control, we have assessed HIV-specific epitope recognition, plasma viral load, and expression of HLA class I alleles in a cohort of HIV-seropositive bar workers. Possession of the HLA class I alleles B5801, B8101, and B0702 was associated with a low median viral load and simultaneously with a broader median recognition of Gag epitopes compared to all other HLA alleles (twofold increase) (P = 0.0035). We further found an inverse linear relationship between the number of Gag epitopes recognized and the plasma viral load (R = -0.36; P = 0.0016). Particularly, recognition of multiple epitopes within two regions of Gag (amino acids [aa] 1 to 75 and aa 248 to 500) was associated with the maintenance of a low steady-state viremia, even years after acute infection.  相似文献   

13.
In chronic HIV infection, CD8+ T cell responses to Gag are associated with lower viral loads, but longitudinal studies of HLA-restricted CD8+ T cell-driven selection pressure in Gag from the time of acute infection are limited. In this study we examined Gag sequence evolution over the first year of infection in 22 patients identified prior to seroconversion. A total of 310 and 337 full-length Gag sequences from the earliest available samples (median = 14 days after infection [Fiebig stage I/II]) and at one-year post infection respectively were generated. Six of 22 (27%) individuals were infected with multiple variants. There was a trend towards early intra-patient viral sequence diversity correlating with viral load set point (p = 0.07, r = 0.39). At 14 days post infection, 59.7% of Gag CTL epitopes contained non-consensus polymorphisms and over half of these (35.3%) comprised of previously described CTL escape variants. Consensus and variant CTL epitope proportions were equally distributed irrespective of the selecting host HLA allele and most epitopes remained unchanged over 12 months post infection. These data suggest that intrapatient diversity during acute infection is an indicator of disease outcome. In this setting, there is a high rate of transmitted CTL escape variants and limited immune selection in Gag during the first year of infection. These data have relevance for vaccine strategies designed to elicit effective CD8+ T cell immune responses.  相似文献   

14.
Recent studies of human immunodeficiency virus (HIV)-specific CD8(+) T cells have focused on responses to single, usually HLA-A2-restricted epitopes as surrogate measures of the overall response to HIV. However, the assumption that a response to one epitope is representative of the total response is unconfirmed. Here we assess epitope immunodominance and HIV-specific CD8(+) T-cell response complexity using cytokine flow cytometry to examine CD8(+) T-cell responses in 11 HLA-A2(+) HIV(+) individuals. Initial studies demonstrated that only 4 of 11 patients recognized the putative immunodominant HLA-A2-restricted p17 epitope SLYNTVATL, suggesting that the remaining subjects might lack significant HIV-specific CD8(+) T-cell responses. However, five of six SLYNTVATL nonresponders recognized other HIV epitopes, and two of four SLYNTVATL responders had greater responses to HIV peptides restricted by other class I alleles. In several individuals, no HLA-A2-restricted epitopes were recognized, but CD8(+) T-cell responses were detected to epitopes restricted by other HLA class I alleles. These data indicate that an individual's overall CD8(+) T-cell response to HIV is not adequately represented by the response to a single epitope and that individual major histocompatibility complex class I alleles do not predict an immunodominant response restricted by that allele. Accurate quantification of total HIV-specific CD8(+) T-cell responses will require assessment of the response to all possible epitopes.  相似文献   

15.
Antiretroviral drug resistance and escape from CTL are major obstacles to effective control of HIV replication. To investigate the possibility of combining drug and immune-based selective pressures against HIV, we studied the effects of antiretroviral drug resistance mutations on CTL recognition of five HIV-1 Pol epitopes presented by common HLA molecules. We found that these common drug resistance mutations sustain or even enhance the antigenicity and immunogenicity of HIV-1 Pol CTL epitopes. Variable patterns of cross-reactive and selective recognition of wild-type and corresponding variant epitopes demonstrate a relatively diverse population of CD8(+) T cells reactive against these epitopes. Variant peptides with multiple drug resistance mutations still sustained CTL recognition, and some HIV-infected individuals demonstrated strong CD8(+) T cell responses against multiple CTL epitopes incorporating drug resistance mutations. Selective reactivity against variant peptides with drug resistance mutations reflected ongoing or previous exposure to the indicated drug, but was not dependent upon the predominance of the mutated sequence in endogenous virus. The frequency and diversity of CTL reactivity against the variant peptides incorporating drug resistance mutations and the ability of these peptides to activate and expand CTL precursors in vitro indicate a significant functional interface between the immune system and antiretroviral therapy. Thus, drug-resistant variants of HIV are susceptible to immune selective pressure that could be applied to combat transmission or emergence of antiretroviral drug-resistant HIV strains and to enhance the immune response against HIV.  相似文献   

16.
CD8+ T lymphocyte responses play an important role in controlling HIV-1 replication but escape from CD8+ T cell surveillance may limit the effectiveness of these responses. Mother-to-child transmission of CD8+ T cell escape variants may particularly affect CD8+ T cell recognition of infant HIV-1 epitopes. In this study, amino acid sequence variation in HIV-1 gag and nef was examined in five untreated mother-infant pairs to evaluate the potential role of CD8+ T cell responses in the evolution of the viral quasispecies. Several CD8+ T cell escape variants were detected in maternal plasma. Evaluation of infant plasma viruses at 1-3 mo documented heterogeneity of gag and nef gene sequences and mother-to-child transmission of CD8+ T cell escape variants. Infant HLA haplotype and viral fitness appeared to determine the stability of the escape mutants in the infant over time. Changes in CD8+ T cell epitope sequences were detected in infants' sequential plasma specimens, suggesting that infants are capable of generating virus-specific CD8+ T cell responses that exert selective pressures in vivo. Altogether, these studies document that HIV-1-specific CD8+ T cell responses contribute to the evolution of the viral quasispecies in HIV-1-infected women and their infants and may have important implications for vaccine design.  相似文献   

17.
CD8+ T cells are important for HIV-1 virus control, but are also a major contributing factor that drives HIV-1 virus sequence evolution. Although HIV-1 cytotoxic T cell (CTL) escape mutations are a common aspect during HIV-1 infection, less is known about the importance of T cell pressure in reversing HIV-1 virus back to a consensus sequences. In this study we aimed to assess the frequency with which reversion of transmitted mutations in T cell epitopes were associated with T cell responses to the mutation. This study included 14 HIV-1 transmission pairs consisting of a ‘source’ (virus-donor) and a ‘recipient’ (newly infected individual). Non-consensus B sequence amino acids (mutations) in T cell epitopes in HIV-1 gag regions p17, p24, p2 and p7 were identified in each pair and transmission of mutations to the recipient was verified with population viral sequencing. Longitudinal analyses of the recipient’s viral sequence were used to identify whether reversion of mutations back to the consensus B sequence occurred. Autologous 12-mer peptides overlapping by 11 were synthesized, representing the sequence region surrounding each reversion and longitudinal analysis of T cell responses to source-derived mutated and reverted epitopes were assessed. We demonstrated that mutations in the source were frequently transmitted to the new host and on an average 17 percent of mutated epitopes reverted to consensus sequence in the recipient. T cell responses to these mutated epitopes were detected in 7 of the 14 recipients in whom reversion occurred. Overall, these findings indicate that transmitted non-consensus B epitopes are frequently immunogenic in HLA-mismatched recipients and new T cell pressures to T cell escape mutations following transmission play a significant role in maintaining consensus HIV-1 sequences.  相似文献   

18.
One of the most important genetic factors known to affect the rate of disease progression in HIV-infected individuals is the genotype at the Class I Human Leukocyte Antigen (HLA) locus, which determines the HIV peptides targeted by cytotoxic T-lymphocytes (CTLs). Individuals with HLA-B*57 or B*5801 alleles, for example, target functionally important parts of the Gag protein. Mutants that escape these CTL responses may have lower fitness than the wild-type and can be associated with slower disease progression. Transmission of the escape variant to individuals without these HLA alleles is associated with rapid reversion to wild-type. However, the question of whether infection with an escape mutant offers an advantage to newly infected hosts has not been addressed. Here we investigate the relationship between the genotypes of transmitted viruses and prognostic markers of disease progression and show that infection with HLA-B*57/B*5801 escape mutants is associated with lower viral load and higher CD4+ counts.  相似文献   

19.
The existence of viral variants that escape from the selection pressures imposed by cytotoxic T-lymphocytes (CTLs) in HIV-1 infection is well documented, but it is unclear when they arise, with reported measures of the time to escape in individuals ranging from days to years. A study of participants enrolled in the SPARTAC (Short Pulse Anti-Retroviral Therapy at HIV Seroconversion) clinical trial allowed direct observation of the evolution of CTL escape variants in 125 adults with primary HIV-1 infection observed for up to three years. Patient HLA-type, longitudinal CD8+ T-cell responses measured by IFN-γ ELISpot and longitudinal HIV-1 gag, pol, and nef sequence data were used to study the timing and prevalence of CTL escape in the participants whilst untreated. Results showed that sequence variation within CTL epitopes at the first time point (within six months of the estimated date of seroconversion) was consistent with most mutations being transmitted in the infecting viral strain rather than with escape arising within the first few weeks of infection. Escape arose throughout the first three years of infection, but slowly and steadily. Approximately one third of patients did not drive any new escape in an HLA-restricted epitope in just under two years. Patients driving several escape mutations during these two years were rare and the median and modal numbers of new escape events in each patient were one and zero respectively. Survival analysis of time to escape found that possession of a protective HLA type significantly reduced time to first escape in a patient (p = 0.01), and epitopes escaped faster in the face of a measurable CD8+ ELISpot response (p = 0.001). However, even in an HLA matched host who mounted a measurable, specific, CD8+ response the average time before the targeted epitope evolved an escape mutation was longer than two years.  相似文献   

20.
Peut V  Kent SJ 《Journal of virology》2007,81(23):13125-13134
Human immunodeficiency virus (HIV)-specific CD8 T lymphocytes are important for the control of viremia, but the relative utility of responses to the various HIV proteins is controversial. Immune responses that force escape mutations that exact a significant fitness cost from the mutating virus would help slow progression to AIDS. The HIV envelope (Env) protein is subject to both humoral and cellular immune responses, suggesting that multiple rounds of mutation are needed to facilitate viral escape. The Gag protein, however, has recently been shown to elicit a more effective CD8 T-cell immune response in humans. We studied 30 pigtail macaques for their CD8 T-lymphocyte responses to HIV-1 Env and simian immunodeficiency virus (SIV) Gag following prime/boost vaccination and intrarectal challenge with simian-human immunodeficiency virus SHIVmn229. Eight CD8 Env-specific T-cell epitopes were identified and mapped in 10 animals. Animals that generated Env-specific CD8 T-cell responses had equivalent viral loads and only a modest advantage in retention of peripheral CD4 T lymphocytes compared to those animals without responses to Env. This contrasts with animals that generated CD8 T-cell responses to SIV Gag in the same trial, demonstrating superior control of viral load and a larger advantage in retention of peripheral CD4 T cells than Gag nonresponders. Mutational escape was common in Env but, in contrast to mutations in Gag, did not result in the rapid emergence of dominant escape motifs, suggesting modest selective pressure from Env-specific T cells. These results suggest that Env may have limited utility as a CD8 T-cell immunogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号