首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Chronic hepatitis B virus (HBV) infection remains incurable. Although HBsAg-specific chimeric antigen receptor (HBsAg-CAR) T cells have been generated, they have not been tested in animal models with authentic HBV infection.

Methods

We generated a novel CAR targeting HBsAg and evaluated its ability to recognize HBV+ cell lines and HBsAg particles in vitro. In vivo, we tested whether human HBsAg-CAR T cells would have efficacy against HBV-infected hepatocytes in human liver chimeric mice.

Results

HBsAg-CAR T cells recognized HBV-positive cell lines and HBsAg particles in vitro as judged by cytokine production. However, HBsAg-CAR T cells did not kill HBV-positive cell lines in cytotoxicity assays. Adoptive transfer of HBsAg-CAR T cells into HBV-infected humanized mice resulted in accumulation within the liver and a significant decrease in plasma HBsAg and HBV-DNA levels compared with control mice. Notably, the fraction of HBV core–positive hepatocytes among total human hepatocytes was greatly reduced after HBsAg-CAR T cell treatment, pointing to noncytopathic viral clearance. In agreement, changes in surrogate human plasma albumin levels were not significantly different between treatment and control groups.

Conclusions

HBsAg-CAR T cells have anti-HBV activity in an authentic preclinical HBV infection model. Our results warrant further preclinical exploration of HBsAg-CAR T cells as immunotherapy for HBV.  相似文献   

2.
Chimeric antigen receptor T‐cell (CAR‐T) therapies have proven clinical efficacy for the treatment of hematological malignancies. However, CAR‐T cell therapies are prohibitively expensive to manufacture. The authors demonstrate the manufacture of human CAR‐T cells from multiple donors in an automated stirred‐tank bioreactor. The authors successfully produced functional human CAR‐T cells from multiple donors under dynamic conditions in a stirred‐tank bioreactor, resulting in overall cell yields which were significantly better than in static T‐flask culture. At agitation speeds of 200 rpm and greater (up to 500 rpm), the CAR‐T cells are able to proliferate effectively, reaching viable cell densities of >5 × 106 cells ml‐1 over 7 days. This is comparable with current expansion systems and significantly better than static expansion platforms (T‐flasks and gas‐permeable culture bags). Importantly, engineered T‐cells post‐expansion retained expression of the CAR gene and retained their cytolytic function even when grown at the highest agitation intensity. This proves that power inputs used in this study do not affect cell efficacy to target and kill the leukemia cells. This is the first demonstration of human CAR‐T cell manufacture in stirred‐tank bioreactors and the findings present significant implications and opportunities for larger‐scale allogeneic CAR‐T production.  相似文献   

3.
4.
The long trend towards analysis at lower and lower levels is starting to reverse. The new integrative studies must make use of the resources uncovered by molecular biology but should also use the characteristics of whole organisms to measure the outcomes of developmental processes. Two examples are given of how movement between levels of analysis is being used with increasing power and promise. The first is the study of behavioural imprinting in birds where many of the molecular and neural mechanisms involved have been uncovered and are now being integrated to explain the behaviour of the whole animal. The second is the triggering during sensitive periods in early life by environmental events of one of several alternative modes of development leading to different phenotypes. A renewed focus on the whole organism is also starting to change the face of evolutionary biology. The decision-making and adaptability of the organism is recognized an important driver of evolution and is increasingly seen as an alternative to the gene-focused views.  相似文献   

5.
嵌合抗原受体(chimeric antigen receptors,CAR)细胞疗法已广泛用于白血病、淋巴瘤的治疗, CD19和CD22靶向CAR-T已在复发、难治性急性B淋巴细胞白血病(RR-B-ALL)等血液系统疾病的治疗上取得了显著疗效,而在T细胞肿瘤治疗上进展缓慢。介绍了目前国内外利用CAR细胞技术与CRISPR / Cas9基因编码技术,设计了T-ALL相关的CAR细胞免疫疗法并进行了CAR细胞免疫疗法在T-ALL治疗上的初步探索。  相似文献   

6.
The adoptive transfer of genetically engineered T cells modified to express a chimeric antigen receptor (CAR) has shown remarkable activity and induces long-term remissions in patients with advanced hematologic malignancies. To date, little is known about predictive indicators of therapeutic efficacy or serious toxicity after CAR T-cell therapy in clinical practice. Biomarkers are not only potentially able to inform physicians and researchers of immunotherapy targets in particular but could also be used to monitor the effectiveness of treatments and to predict incidence of side effects in some circumstances. Identification of new biomarkers can therefore not only contribute to the development of new therapeutic and prognostic strategies for CAR T-cell therapy for cancer but also help to generate improved clinical practices for early recognition and minimization of adverse effects while preserving the antitumor activity of the CAR T cells. Herein, we will consider a variety of predictive and therapeutic biomarkers in CAR T-cell therapy and the state of current understanding of their clinical utility. The incorporation of biomarker studies in CAR T-cell clinical trials and practice will help to realize the potential clinical benefit of biomarker-guided therapy.  相似文献   

7.
Acute megakaryoblastic leukaemia (AMkL) is a rare subtype of acute myeloid leukaemia (AML) representing 5% of all reported cases, and frequently diagnosed in children with Down syndrome. Patients diagnosed with AMkL have low overall survival and have poor outcome to treatment, thus novel therapies such as CAR T cell therapy could represent an alternative in treating AMkL. We investigated the effect of a new CAR T cell which targets CD41, a specific surface antigen for M7-AMkL, against an in vitro model for AMkL, DAMI Luc2 cell line. The performed flow cytometry evaluation highlighted a percentage of 93.8% CAR T cells eGFP-positive and a limited acute effect on lowering the target cell population. However, the interaction between effector and target (E:T) cells, at a low ratio, lowered the cell membrane integrity, and reduced the M7-AMkL cell population after 24 h of co-culture, while the cytotoxic effect was not significant in groups with higher E:T ratio. Our findings suggest that the anti-CD41 CAR T cells are efficient for a limited time spawn and the cytotoxic effect is visible in all experimental groups with low E:T ratio.  相似文献   

8.

Background aims

Clinical-grade chimeric antigenic receptor (CAR)19 T cells are routinely manufactured by lentiviral/retroviral (LV/RV) transduction of an anti-CD3/CD28 activated T cells, which are then propagated in a culture medium supplemented with interleukin (IL)-2. The use of LV/RVs for T-cell modification represents a manufacturing challenge due to the complexity of the transduction approach and the necessity of thorough quality control.

Methods

We present here a significantly improved protocol for CAR19 T-cell manufacture that is based on the electroporation of peripheral blood mononuclear cells with plasmid DNA encoding the piggyBac transposon/transposase vectors and their cultivation in the presence of cytokines IL-4, IL-7 and IL-21.

Results

We found that activation of the CAR receptor by either its cognate ligand (i.e., CD19 expressed on the surface of B cells) or anti-CAR antibody, followed by cultivation in the presence of cytokines IL-4 and IL-7, enables strong and highly selective expansion of functional CAR19 T cells, resulting in >90% CAR+ T cells. Addition of cytokine IL-21 to the mixture of IL-4 and IL-7 supported development of immature CAR19 T cells with central memory and stem cell memory phenotypes and expressing very low amounts of inhibitory receptors PD-1, LAG-3 and TIM-3.

Conclusions

Our protocol provides a simple and cost-effective method for engineering high-quality T cells for adoptive therapies.  相似文献   

9.
《Cytotherapy》2014,16(2):149-159
Adoptive immunotherapy—in particular, T-cell therapy—has recently emerged as a useful strategy with the potential to overcome many of the limitations of antiviral drugs for the treatment of viral complications after hematopietic stem cell transplantation. In this review, we briefly summarize the current methods for virus-specific T-cell isolation or selection and we report results from clinical trials that have used these techniques, focusing specifically on the strategies aimed to broaden the application of this technology.  相似文献   

10.
11.
12.
《Cell》2021,184(25):6081-6100.e26
  1. Download : Download high-res image (148KB)
  2. Download : Download full-size image
  相似文献   

13.
A solid scientific basis now supports the concept that cytotoxic T lymphocytes can specifically recognize and destroy melanoma cells. Over the last decades, clinicians and basic scientists have joined forces to advance our concepts of melanoma immunobiology. This has catalyzed the rational development of therapeutic approaches to enforce melanoma‐specific T cell responses. Preclinical studies in experimental mouse models paved the way for their successful translation into clinical benefit for patients with metastatic melanoma. A more thorough understanding of how melanomas develop resistance to T cell immunotherapy is necessary to extend this success. This requires a continued interdisciplinary effort of melanoma biologists and immunologists that closely connects clinical observations with in vitro investigations and appropriate in vivo mouse models: From bedside to bench to barn and back.  相似文献   

14.
《Cell metabolism》2023,35(3):517-534.e8
  1. Download : Download high-res image (187KB)
  2. Download : Download full-size image
  相似文献   

15.
《Cytotherapy》2014,16(10):1384-1389
Background aimsDespite promising advances in cellular therapies, it will be difficult to fully test or implement new therapies until advances are made in the processes for cell preparation. This study describes the use of an advanced prototype of a flow-cytometry cell purification system constructed for operation in a clinical environment to prepare regulatory T cells defined as CD4+/CD25bright/CD127neg/low.MethodsThe sort performance of the Gigasort system was directly compared with available droplet sorters using mixtures of highly fluorescent and non-fluorescent 5-μm polystyrene particles. CD4+-enriched cell preparations were processed with the use of a sterile, disposable fluid handling unit with a chip containing parallel microfluidic-based sorters.ResultsSimilar purity and sort efficiency as found with droplet sorters were obtained with the 24-channel chip sorter system. Starting with 450 million fresh peripheral blood mononuclear cells, 150,000 to 1.7 million cells that were, on average, 85% FoxP3-positive and 97% viable, were obtained in <4 h.ConclusionsThis study presents a technology adapted to regulatory requirements for clinical cell purification and that achieves high throughput and cell-friendly conditions by use of a microfluidic chip with 24 parallel microsorters, providing a rapid, sterile method of purifying regulatory T cells accurately and with excellent viability.  相似文献   

16.
Summary A long-term-cultured cytotoxic T lymphocyte (CTL) line (E/88) was obtained from splenic lymphocytes of BALB/c (H-2 d) mice bearing the weakly immunogenic colonic carcinoma C26. This line was shown to be /TCR+V6+CD3+CD8+CD4 and to recognize a common tumour-associated antigen on syngeneic carcinomas and sarcomas in a major-histocompatibility—complex-restricted and T-cell-receptor(TCR)-mediated fashion. The assessment of cytotoxic activity on a panel of 30 normal and neoplastic target cells of differing etiology and histotype showed that E/88 CTL lysed syngeneic colon carcinomas and some fibrosarcomas but not leukemias, lymphomas or mammary carcinomas. Clones derived from the E/88 line exhibited the same lytic pattern. Moreover, anti-T3, anti-Lyt2.2, anti-/TCR and anti-V6 mAbs as well as anti-H-2d antisera abolished cytotoxicity when used in blocking experiments. The therapeutic activity of E/88 CTL upon in vivo transfer was assessed in mice bearing either experimental or spontaneous metastases of C26. In both models therapy with E/88 lymphocytes in combination or not with interleukin-2 was highly effective. Adoptive immunotherapy carried out with two clones obtained from line E/88 showed comparable therapeutic effects. In addition, treatment of syngeneic mice bearing experimental metastases of in vitro E/88-lysable or E/88-resistant tumours, showed that E/88 CTL can eradicate metastases of the former but not of the latter neoplasms. These data indicate that long-term CTL lines recognizing common tumour-associated antigens can be derived from tumourbearing animals and used in adoptive immunotherapy of tumours previously shown to be lysed in vitro by these effectors.  相似文献   

17.
Autolymphocyte therapy (ALT) is outpatient-based adoptive immunotherapy using ex vivo-activated memory T-cells. To support the safe and reproducible delivery of ALT at three cell processing facilities (Boston, MA; Atlanta, GA; Orange, CA) we created a comprehensive quality assurance/quality control program compliant with recent FDA guidance relevant to activated lymphocytes and somatic cell therapies. Each facility performed extensive QC testing to ensure sterility, viability, and proper cell yield. Additonally, several QC tests were performed at Cellocr's centralized reference laboratory to monitor cell potency and identity of the ex vivo-processed lymphocytes. We report here the successful implementation of this QA/QC program for ALT which has resulted in the safe preparation and delivery of cell infusion products amounting to over 3600 treatments at seven clinical sites nationwide. We believe this program will serve as a model for other cellular therapies.  相似文献   

18.
《Cell Stem Cell》2022,29(8):1181-1196.e6
  1. Download : Download high-res image (136KB)
  2. Download : Download full-size image
  相似文献   

19.
Despite substantial developments in conventional treatments such as surgery, chemotherapy, radiotherapy, endocrine therapy, and molecular‐targeted therapy, breast cancer remains the leading cause of cancer mortality in women. Currently, chimeric antigen receptor (CAR)–redirected immune cell therapy has emerged as an innovative immunotherapeutic approach to ameliorate survival rates of breast cancer patients by eliciting cytotoxic activity against cognate tumour‐associated antigens expressing tumour cells. As a crucial component of adaptive immunity, T cells and NK cells, as the central innate immune cells, are two types of pivotal candidates for CAR engineering in treating solid malignancies. However, the biological distinctions between NK cells‐ and T cells lead to differences in cancer immunotherapy outcomes. Likewise, optimal breast cancer removal via CAR‐redirected immune cells requires detecting safe target antigens, improving CAR structure for ideal immune cell functions, promoting CAR‐redirected immune cells filtration to the tumour microenvironment (TME), and increasing the ability of these engineered cells to persist and retain within the immunosuppressive TME. This review provides a concise overview of breast cancer pathogenesis and its hostile TME. We focus on the CAR‐T and CAR‐NK cells and discuss their significant differences. Finally, we deliver a summary based on recent advancements in the therapeutic capability of CAR‐T and CAR‐NK cells in treating breast cancer.  相似文献   

20.
Refractory/relapsed B cell lymphoma patients who received the available anti-CD19 chimeric antigen receptor (CAR) T cells may still experience a short duration of remission. Here in this study, we evaluated the safety and efficacy of a novel dominant-negative programmed cell death-1 (PD-1) armored anti-CD19 CAR T cells. A total of 9 patients (including 4 diffuse large B cell lymphomas, DLBCL, 2 transformed follicular lymphomas, TFL, and 3 follicular lymphomas, FL) received the novel CAR T cells infusion at a dose of more than 1 × 106/kg. Grade ≥ 3 cytokine release syndrome (CRS) and neurotoxicity were observed in 11.1% (n = 1/9) and 11.1% (n = 1/9) of patients, respectively. The overall response rate (ORR) was 77.8% (n = 7/9) and complete response (CR) rate was 55.6% (n = 5/9). Two patients have ongoing CR (all at 20+ months). CAR T cells expanded after infusion and continued to be detectable at 12+ months in patients with ongoing CR. This novel CD19-CAR T cell was safe and effective with durable remissions in patients with refractory/relapsed B cell lymphoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号