首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Successful gene therapy largely depends on the selective introduction of therapeutic genes into the appropriate target cancer cells. One of the most effective and promising approaches for targeting tumor tissue during gene delivery is the use of viral vectors, which allow for high efficiency gene delivery. However, the use of viral vectors is not without risks and safety concerns, such as toxicities, a host immune response towards the viral antigens or potential viral recombination into the host''s chromosome; these risks limit the clinical application of viral vectors. The Sleeping Beauty (SB) transposon-based system is an attractive, non-viral alternative to viral delivery systems. SB may be less immunogenic than the viral vector system due to its lack of viral sequences. The SB-based gene delivery system can stably integrate into the host cell genome to produce the therapeutic gene product over the lifetime of a cell. However, when compared to viral vectors, the non-viral SB-based gene delivery system still has limited therapeutic efficacy due to the lack of long-lasting gene expression potential and tumor cell specific gene transfer ability. These limitations could be overcome by modifying the SB system through the introduction of the hTERT promoter and the SV40 enhancer. In this study, a modified SB delivery system, under control of the hTERT promoter in conjunction with the SV40 enhancer, was able to successfully transfer the suicide gene (HSV-TK) into multiple types of cancer cells. The modified SB transfected cancer cells exhibited a significantly increased cancer cell specific death rate. These data suggest that our modified SB-based gene delivery system can be used as a safe and efficient tool for cancer cell specific therapeutic gene transfer and stable long-term expression.  相似文献   

2.
While adenovirus (Ad) gene delivery vectors are useful in many gene therapy applications, their broad tropism means that they cannot be directed to a specific target cell. There are also a number of cell types involved in human disease which are not transducible with standard Ad vectors, such as Epstein-Barr virus (EBV)-transformed B lymphocytes. Adenovirus binds to host cells via the viral fiber protein, and Ad vectors have previously been retargeted by modifying the fiber gene on the viral chromosome. This requires that the modified fiber be able to bind to the cell in which the vector is grown, which prevents truly specific vector targeting. We previously reported a gene delivery system based on a fiber gene-deleted Ad type 5 (Ad5) vector (Ad5.betagal.DeltaF) and packaging cells that express the viral fiber protein. Expression of different fibers in packaging cells will allow Ad retargeting without modifying the viral chromosome. Importantly, fiber proteins which can no longer bind to the producer cells can also be used. Using this approach, we generated for the first time pseudotyped Ad5.betagal.DeltaF particles containing either the wild-type Ad5 fiber protein or a chimeric fiber with the receptor-binding knob domain of the Ad3 fiber. Particles equipped with the chimeric fiber bound to the Ad3 receptor rather than the coxsackievirus-adenovirus receptor protein used by Ad5. EBV-transformed B lymphocytes were infected efficiently by the Ad3-pseudotyped particles but poorly by virus containing the Ad5 fiber protein. The strategy described here represents a broadly applicable method for targeting gene delivery to specific cell types.  相似文献   

3.
Vectors derived from retroviridae offer particularly flexible properties in gene transfer applications given the numerous possible associations of various viral surface glycoproteins (determining cell tropism) with different types of retroviral cores (determining genome replication and integration). Lentiviral vectors should be preferred gene delivery vehicles over vectors derived from onco-retroviruses such as murine leukemia viruses (MLVs) that cannot transduce non-proliferating target cells. Generating lentiviral vectors pseudotyped with different viral glycoproteins (GPs) may modulate the physicochemical properties of the vectors, their interaction with the host immune system and their host range. There are however important gene transfer restrictions to some non-proliferative tissues or cell types and recent studies have shown that progenitor hematopoietic stem cells in G(0), non-activated primary blood lymphocytes or monocytes were not transducible by lentiviral vectors. Moreover, lentiviral vectors that have the capacity to deliver transgenes into specific tissues are expected to be of great value for various gene transfer applications in vivo. Several innovative approaches have been explored to overcome such problems that have given rise to novel concepts in the field and have provided promising results in preliminary evaluations in vivo. Here we review the different approaches explored to upgrade lentiviral vectors, aiming at developing vectors suitable for in vivo gene delivery.  相似文献   

4.
基因治疗是将可具有治疗性的基因导入病变细胞以达到治疗遗传性疾病或获得性功能缺损疾病的治疗手段,是一种极具潜力的新型治疗方法。然而基因治疗面临着一系列一陆床应用障碍,其中缺乏理想的基因输送载体是首要问题。绝大多数基因治疗方案受困缺乏安全有效的基因输送手段,载体要达到目的地发挥作用,需要克服一系列复杂的体内生物屏障,包括细胞外屏障和细胞内屏障。目前基因输送载体主要分为病毒载体和非病毒载体,其中病毒载体天然进化至可进入宿主细胞,具有输送效率高,靶向性好的特点,但存在长期安全性的缺点。非病毒载体主要包括阳离子脂质体和阳离子聚合物,由于易于制备和无免疫原性、安全性好,被认为是更有潜力的输送载体,是目前研究的重点。本文结合基因治疗输送屏障的理论基础及临床研究,对基因输送载体系统的现状进行了综述。  相似文献   

5.
6.
7.
The first clinical gene delivery, which involved insertion of a marker gene into lymphocytes from cancer patients, was published 25 years ago. In this review, we describe progress since then in gene therapy. Patients with some inherited single-gene defects can now be treated with their own bone marrow stem cells that have been engineered with a viral vector carrying the missing gene. Patients with inherited retinopathies and haemophilia B can also be treated by local or systemic injection of viral vectors. There are also a number of promising gene therapy approaches for cancer and infectious disease. We predict that the next 25 years will see improvements in safety, efficacy and manufacture of gene delivery vectors and introduction of gene-editing technologies to the clinic. Gene delivery may also prove a cost-effective method for the delivery of biological medicines.  相似文献   

8.
9.
The inefficiency of in vivo gene transfer using currently available vectors reflects a major hurdle in cancer gene therapy. Both viral and non-viral approaches that improve gene transfer efficiency have been described, but suffer from a number of limitations. Herein, a fiber-modified adenovirus, carrying the small peptide ligand on the capsid, was tested for the delivery of a transgene to cancer cells. The fiber-modified adenovirus was able to mediate the entry and expression of a beta-galactosidase into cancer cells with increased efficiency compared to the unmodified adenovirus. Particularly, the gene transfer efficiency was improved up to 5 times in OVCAR3 cells, an ovarian cancer cell line. Such transduction systems hold promise for delivering genes to transferrin receptor overexpressing cancer cells, and could be used for future cancer gene therapy.  相似文献   

10.
Gene delivery holds therapeutic promise for the treatment of neurological diseases and spinal cord injury. Although several studies have investigated the use of non-viral vectors, such as polyethylenimine (PEI), their clinical value is limited by their cytotoxicity. Recently, biodegradable poly (lactide-co-glycolide) (PLGA) nanospheres have been explored as non-viral vectors. Here, we show that modification of PLGA nanospheres with 3β-[N-(N′,N′-dimethylaminoethane) carbamoyl] cholesterol (DC-Chol) enhances gene transfection efficiency. PLGA/DC-Chol nanospheres encapsulating DNA were prepared using a double emulsion-solvent evaporation method. PLGA/DC-Chol nanospheres were less cytotoxic than PEI both in vitro and in vivo. DC-Chol modification improved the uptake of nanospheres, thereby increasing their transfection efficiency in mouse neural stem cells in vitro and rat spinal cord in vivo. Also, transgene expression induced by PLGA nanospheres was higher and longer-lasting than that induced by PEI. In a rat model of spinal cord injury, PLGA/DC-Chol nanospheres loaded with vascular endothelial growth factor gene increased angiogenesis at the injury site, improved tissue regeneration, and resulted in better recovery of locomotor function. These results suggest that DC-Chol-modified PLGA nanospheres could serve as therapeutic gene delivery vehicles for spinal cord injury.  相似文献   

11.
Gene therapy has been applied to the treatment of cancer and metastatic disease for over ten years. Research in this area has utilised multiple gene therapy approaches including targeting tumour suppressor genes and oncogenes, stimulating the immune system, targeted chemotherapy, antiangiogenic strategies, and direct viral oncolysis. In recent years, gene delivery vectors have been developed that selectively target tumour cells through tumour-specific receptors, deletion of certain viral gene sequences, or incorporation of tumour-specific promoter sequences that drive gene expression. Preclinical models have produced promising results, demonstrating significant tumour regression and reduction of metastatic disease. Unfortunately, only limited responses have been observed in clinical trials. The main limitations in treating metastatic disease include poor vector transduction efficiencies and difficulties in targeting remote tumour cells with systemic vector delivery. Currently, various groups are investigating means to improve gene delivery and clinical responses by continuing to modify gene delivery vectors and by concentrating on combination gene therapy and multimodality therapy.  相似文献   

12.
The strategy for tumor suppressor gene therapy for cancer is to suppress the malignant phenotype of tumor cells by replacing the inactivated gene with a normal (wild-type) one to restore control of cell growth and differentiation. To effectively carry out this strategy, the therapeutic genes must be delivered efficiently and expressed at an adequate level in the tumor. Adenoviral vectors have rapidly developed into one of the major systems now in use to effect this delivery and expression, primarily because of their advantages over other viral vectors, such as their ease of manipulation, their wide host cell range with high infectivity, their relative stability with high obtainable titers (1010–1012plaque-forming units/ml), and their episomal expression with low genotoxicity. Adenoviral vectors are a good technical approach to delivering tumor suppressor genes for cancer therapy; they have demonstrated effectiveness in preclinical animal models. This chapter organizes and describes a series of methods for developing a preclinical model for adenovirus-mediated tumor suppressor gene therapy of cancer. The disadvantages of adenoviral vectors and the possibilities for improving this vector system to enhance tumor suppression efficacy are also discussed.  相似文献   

13.
Present therapeutic strategies for most cancers are restricted mainly to the primary tumors and are also not very effective in controlling metastatic states. Alternatively, gene therapy can be a potential option for treating such cancers. Currently mammalian viral-based cancer gene therapy is the most popular approach, but the efficacy has been shown to be quite low in clinical trials. In this study, for the first time, the insect cell-specific baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) has been evaluated as a vector for gene delivery to colorectal cancer cells. Experiments involving factorial design were employed to study the individual and combined effects of different parameters such as multiplicity of infection (MOI), viral incubation time and epigenetic factors on transduction efficiency. The results demonstrate that baculovirus gene delivery system holds immense potential for development of a new generation of highly effective virotherapy for colorectal, as well as other major carcinomas (breast, pancreas, and brain), and offers significant benefits to traditional animal virus-based vectors with respect to safety concerns.  相似文献   

14.

Background  

Recombinant adenovirus vectors and transfection agents comprising cationic lipids are widely used as gene delivery vehicles for functional expression in cultured cells. Consequently, these tools are utilized to investigate the effects of functional over-expression of proteins on insulin mediated events. However, we have previously reported that cationic lipid reagents cause a state of insulin unresponsiveness in cell cultures. In addition, we have found that cultured cells often do not respond to insulin stimulation following adenovirus treatment. Infection with adenovirus compromises vital functions of the host cell leading to the activation of protein kinases central to insulin signalling, such as protein kinase B/Akt. Therefore, we investigated the effect of adenovirus infection on insulin unresponsiveness by means of Akt activation in cultured cells. Moreover, we investigated the use of baculovirus as a heterologous viral gene delivery vehicle to circumvent these phenomena. Since the finding that baculovirus can efficiently transduce mammalian cells, the applications of this viral system in gene delivery has greatly expanded and one advantage is the virtual absence of cytotoxicity in mammalian cells.  相似文献   

15.
Advances in gene modification and viral therapy have led to the development of a variety of vectors in several viral families that are capable of replication specifically in tumor cells. Because of the nature of viral delivery, infection, and replication, this technology, oncolytic virotherapy, may prove valuable for treating cancer patients, especially those with inoperable tumors. Current limitations exist, however, for oncolytic virotherapy. They include the body's B and T cell responses, innate inflammatory reactions, host range, safety risks involved in using modified viruses as treatments, and the requirement that most currently available oncolytic viruses require local administration. Another important constraint is that genetically enhanced vectors may or may not adhere to their replication restrictions in long-term applications. Several solutions and strategies already exist, however, to minimize or circumvent many of these limitations, supporting viral oncolytic therapy as a viable option and powerful tool in the fight against cancer.  相似文献   

16.
Non-viral vectors are less efficient than the use of viral vectors for delivery of genetic material to cells in vitro and especially in vivo. However, viral vectors involve the use of foreign proteins that can stimulate both the innate and acquired immune response. In contrast, plasmid DNA can be delivered without carrier proteins and is non-immunogenic. Plasmid gene delivery can be enhanced by the use of physical methods that aid the passage of the plasmid through the cell membrane. Electroporation and microbubble-enhanced ultrasound are two of the most effective physical delivery methods and these can be applied to a range of different cell types in vitro and a broad range of tissues in vivo. Both techniques also have the advantage that, unlike viral vectors, they can be used to target specific tissues with systemic delivery. Although electroporation is often the more efficient of the two, microbubble-enhanced ultrasound causes less damage and is less invasive. This review provides an introduction to the methodology and summarises the range of cells and tissues that have been genetically modified using these techniques.  相似文献   

17.
The downregulation of gene expression by RNA interference holds great potential for genetic analysis and gene therapy. However, a more efficient delivery system for small interfering RNA (siRNA) into the target cells is required for wide fields such as cell biology, physiology, and clinical application. Non-viral vectors are stronger candidates than viral vectors because they are safer and easier to prepare. We have previously used a new method for gene transfection by combining cationic liposomes with the biosurfactant mannosylerythritol lipid-A (MEL-A). The novel MEL-A-containing cationic liposomes rapidly delivered DNA (plasmids and oligonucleotides) into the cytosol and nucleus through membrane fusion between liposomes and the plasma membrane, and consequently, enhanced the gene transfection efficiency. In this study, we determined the efficiency of MEL-A-containing cationic liposomes for siRNA delivery. We observed that exogenous and endogenous protein expression was suppressed by approximately 60% at 24 h after brief (30 min) incubation of target cells with MEL-A-containing cationic liposome/siRNA complexes. Confocal microscopic analysis showed that suppression of protein expression was caused by rapid siRNA delivery into the cytosol. We found that the MEL-A-containing cationic liposomes directly delivered siRNA into the cytoplasm by the membrane fusion in addition to endocytotic pathway whereas Lipofectamine™ RNAiMax delivered siRNA only by the endocytotic pathway. It seems that the ability to rapidly and directly deliver siRNA into the cytosol using MEL-A-containing cationic liposomes is able to reduce immune responses, cytotoxicity, and other side effects caused by viral vectors in clinical applications.  相似文献   

18.
19.
目的:建立基于聚(乳酸-羟基乙酸)纳米粒(PLGA)载DNA的基因转染体系,比较用空白聚(乳酸-羟基乙酸)纳米粒(PLG-A-E)吸附质粒DNA和用分枝PEI修饰后的PLGA纳米粒(PLGA-BPEI)吸附质粒DNA优缺点。方法:用乳化蒸发法制备纳米粒,对纳米粒进行表征研究,包括包封率、Zeta电位、粒径大小、稳定性,用荧光显微镜观察它们对NIH3T3和HEK293细胞的转染效率,用MTT检测对它们细胞的毒性。结果:制备了两种基于PLGA的纳米粒,PLGA-E和PLGA-BPEI粒径大小为200-270nm,zeta电位为0-30mV,在血清和不同的pH值时两者均较稳定,转染效率PLGA-BPEI较PLGA-E高,且释放时间早,但前者较后者对细胞毒性大。结论:这两种基于PLGA纳米粒均能有效转染质粒DNA,它们存在不同的优缺点,应根据不同需要进行选择。  相似文献   

20.
Carbon nanotubes (CNTs) are nanostructures, allotropes of carbon which are made up of graphene sheets wrapped around it forming cylindrical structures. CNTs have been regarded to have interesting and attractive physical and chemical properties and have been tremendously used in genetic engineering. Understanding the role of CNTs in development of transgenic plants, review of research papers in the field was done. CNTs are classified into two categories: the single-walled and multiwalled (MWCNTs) structures. They are valuable vectors in various biomedicine fields such as Gene delivery, Drug delivery, Immunotherapy, Tissue engineering, and Biomedical imaging and also, they deliver the DNA without damaging the cells. Based on recent studies, the functionalization of CNTs when combined with some other suitable molecules can drastically subside their toxic effects. Having unique properties such as small size, larger surface area is useful in delivering DNA into mammalian cells as well. Modifications in CNTs can make nucleic acids adhere to them even more efficiently. Also, MWCNTs are crucial in delivery DNA into the cytoplasm. Based on other methods, the CNTs-DNA are a preferred choice and the inclination toward double-stranded DNA is used over single-stranded DNA in gene delivery shows effective results. The only downside of CNTs is that they are hydrophobic and are difficult to form an aqueous solution, thus limiting their applicability. This review will aid you in comprehending useful knowledge related to a general overview of topics related to CNTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号