首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The depressed function of failing hearts has been partially attributed to increased protein phosphatase-1 through its impaired regulation by inhibitor-1. Phosphorylation of inhibitor-1 at Thr35 by PKA results in potent inhibition of protein phosphatase-1 activity, while phosphorylation at Ser67 or Thr75 by PKC attenuates the inhibitory activity. To examine the functional role of dual-site (Ser67, Thr75) phosphorylation of inhibitor-1 by PKC, the constitutively phosphorylated Ser67 (S67D) and/or Thr75 (T75D) human inhibitor-1 forms were expressed in adult cardiomyocytes. Expression of either single or double phosphorylated inhibitor-1 was associated with similar decreases in cardiac contractility, indicating that maximal inhibition can be elicited by each of these sites alone and that their inhibitory effects are not additive. Notably, activation of the cAMP pathway could only partially reverse the depressed contractile parameters. Accordingly, protein phosphatase-1 activity remained elevated, phosphorylation of phospholamban at Ser16 was decreased, and the EC(50) values of the sarcoplasmic reticulum calcium transport system were higher compared with controls. Thus phosphorylation of Ser67 and/or Thr75 in inhibitor-1 may mitigate the stimulatory effects of the cAMP pathway, resulting in compromised cardiac function.  相似文献   

2.
PKC-alpha regulates cardiac contractility and propensity toward heart failure   总被引:16,自引:0,他引:16  
The protein kinase C (PKC) family of serine/threonine kinases functions downstream of nearly all membrane-associated signal transduction pathways. Here we identify PKC-alpha as a fundamental regulator of cardiac contractility and Ca(2+) handling in myocytes. Hearts of Prkca-deficient mice are hypercontractile, whereas those of transgenic mice overexpressing Prkca are hypocontractile. Adenoviral gene transfer of dominant-negative or wild-type PKC-alpha into cardiac myocytes enhances or reduces contractility, respectively. Mechanistically, modulation of PKC-alpha activity affects dephosphorylation of the sarcoplasmic reticulum Ca(2+) ATPase-2 (SERCA-2) pump inhibitory protein phospholamban (PLB), and alters sarcoplasmic reticulum Ca(2+) loading and the Ca(2+) transient. PKC-alpha directly phosphorylates protein phosphatase inhibitor-1 (I-1), altering the activity of protein phosphatase-1 (PP-1), which may account for the effects of PKC-alpha on PLB phosphorylation. Hypercontractility caused by Prkca deletion protects against heart failure induced by pressure overload, and against dilated cardiomyopathy induced by deleting the gene encoding muscle LIM protein (Csrp3). Deletion of Prkca also rescues cardiomyopathy associated with overexpression of PP-1. Thus, PKC-alpha functions as a nodal integrator of cardiac contractility by sensing intracellular Ca(2+) and signal transduction events, which can profoundly affect propensity toward heart failure.  相似文献   

3.
Human and experimental heart failure is characterized by increases in type-1 protein phosphatase activity, which may be partially attributed to inactivation of its endogenous regulator, protein phosphatase inhibitor-1. Inhibitor-1 represents a nodal integrator of two major second messenger pathways, adenosine 3',5'-cyclic monophosphate (cAMP) and calcium, which mediate its phosphorylation at threonine 35 and serine 67, respectively. Here, using recombinant inhibitor-1 wild-type and mutated proteins, we identified a novel phosphorylation site in inhibitor-1, threonine 75. This phosphoamino acid was phosphorylated in vitro by protein kinase Calpha independently and to the same extent as serine 67, the previous protein kinase Calpha-identified site. Generation of specific antibodies for the phosphorylated and dephosphorylated threonine 75 revealed that this site is phosphorylated in rat and dog hearts. Adenoviral-mediated expression of the constitutively phosphorylated threonine 75 inhibitor-1 in isolated myocytes was associated with specific stimulation of type-1 protein phosphatase activity and marked inhibition of the sarcoplasmic calcium pump affinity for calcium, resulting in depressed contractility. Thus, phosphorylation of inhibitor-1 at threonine 75 represents a new mechanism of cardiac contractility regulation, partially through the alteration of sarcoplasmic reticulum calcium transport activity.  相似文献   

4.
Quantitative immunoassays to discriminate and quantitate phospholamban and its phosphorylation states in heart homogenates were developed using known amounts of protein determined by amino acid analysis. Synthetic 1-52 phospholamban, the hydrophilic 1-25 peptide, and 1-25 phosphopeptides containing P-Ser(16), P-Thr(17), and dually phosphorylated (P-Ser(16), P-Thr(17)) were used to calibrate immunoblot systems. In addition, synthetic 1-52 peptide was phosphorylated using cAMP-dependent protein kinase (P-Ser(16)) or Ca(2+)-calmodulin protein kinase (P-Thr(17)) and then separated from unphosphorylated 1-52 by HPLC prior to quantitation. Further, canine cardiac sarcoplasmic reticulum was phosphorylated in vitro using [gamma-(32)P]-ATP with cAMP-dependent protein kinase and/or Ca(2+)-calmodulin-dependent protein kinase as well as sequential phosphorylation in both orders to assess the veracity of antibody recognition of phosphorylated forms. Western blots proved useful in characterizing the reactivity of the different antibodies to phospholamban and phosphorylated phospholamban, but were inefficient for accurate quantitation and problems with antibody recognition of dually phosphorylated phospholamban were found. mAb 1D11 recognized all forms of phospholamban, polyclonal antibodies 285 and PS-16 were highly selective for P-Ser(16) phospholamban but had diminished reactivity to diphosphorylated (P-Ser(16), P-Thr(17)) phospholamban, and polyclonal antibody PT-17, although selective for P-Thr(17) phospholamban, generated very weak signals on Western blots and reacted poorly with diphosphorylated phospholamban. Results in quantitative immunodot blot experiments were even more compelling. None of the phosphorylation specific antibodies reacted with the diphospho 1-25 phospholamban peptide. Transgenic mouse hearts expressing varying levels of PLB and ferret heart biopsy samples taken before and after isoproterenol perfusion were analyzed. In all samples containing phospholamban, a basal level of Ser(16) phosphorylation (about 4% of the total PLB population) and a lesser amount of Thr(17) phosphorylation was observed. Upon isoproterenol perfusion, Ser(16) phosphorylation increased only to 17% of the total phospholamban population with a similar change in Thr(17) phosphorylation. This suggests that phospholamban phosphorylation may serve as an electrostatic switch that dissociates inactive calcium pump complexes into catalytically active units. Thus, direct correlations between phospholamban phosphorylation state and contractile parameters may not be valid.  相似文献   

5.
Canine cardiac sarcoplasmic reticulum vesicles contain intrinsic protein phosphatase activity, which can dephosphorylate phospholamban and regulate calcium transport. This phosphatase has been suggested to be a mixture of both type 1 and type 2 enzymes (E. G. Kranias and J. Di Salvo, 1986, J. Biol. Chem. 261, 10,029-10,032). In the present study the sarcoplasmic reticulum phosphatase activity was solubilized with n-octyl-beta-D-glucopyranoside and purified by sequential chromatography on DEAE-Sephacel, polylysine-agarose, heparin-agarose, and DEAE-Sephadex. A single peak of phosphatase activity was eluted from each column and it was coincident for both phospholamban and phosphorylase a, used as substrates. The partially purified phosphatase could dephosphorylate the sites on phospholamban phosphorylated by either cAMP-dependent or calcium-calmodulin-dependent protein kinase(s). Enzymatic activity was inhibited by inhibitor-2 and by okadaic acid (I50 = 10-20 nM), using either phosphorylase a or phospholamban as substrates. The sensitivity of the phosphatase to inhibitor-2 or okadaic acid was similar for the two sites on phospholamban, phosphorylated by the cAMP-dependent and the calcium-calmodulin-dependent protein kinases. Phospholamban phosphatase activity was enhanced (40%) by Mg2+ or Mn2+ (3 mM) while Ca2+ (0.1-10 microM) had no effect. These characteristics suggest that the phosphatase associated with cardiac sarcoplasmic reticulum is a type 1 enzyme, and this activity may participate in the regulation of Ca2+ transport through dephosphorylation of phospholamban in cardiac muscle.  相似文献   

6.
Calcium fluxes across the sarcoplasmic reticulum membrane are regulated by phosphorylation of a 27,000-dalton membrane-bound protein termed phospholamban. Phospholamban is phosphorylated by three different protein kinases (cAMP-dependent, Ca2+.CAM-dependent and Ca2+.phospholipid dependent) at apparently distinct sites. Phosphorylation by each of the protein kinases increases the rates of active calcium transport by sarcoplasmic reticulum vesicles. The stimulatory effects of protein kinases on the calcium pump may be reversed by an endogenous protein phosphatase activity. The phosphoprotein phosphatase can dephosphorylate both the cAMP-dependent and the Ca2+.CAM-dependent sites of phospholamban. Phosphorylation of phospholamban also occurs in situ, in perfused beating hearts, during the peak of the inotropic response to beta-adrenergic stimulation. Reversal of the stimulatory effects is associated with dephosphorylation of phospholamban. Thus, in vivo and in vitro studies suggest that phospholamban is a regulator for the calcium pump in cardiac sarcoplasmic reticulum. The degree of phospholamban phosphorylation determined by the interaction of specific protein kinases and phosphatases may represent an important control for sarcoplasmic reticulum function and, thus, for the contraction-relaxation cycle in the myocardium. In this review, we summarize recent evidence on physical and structural properties of phospholamban, the proposed structural molecular models for this protein, and the significance of its regulatory role both in vitro and in situ.  相似文献   

7.
Transgenic (TG) mice expressing a Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitory peptide targeted to the cardiac myocyte longitudinal sarcoplasmic reticulum (LSR) display reduced phospholamban phosphorylation at Thr17 and develop dilated myopathy when stressed by gestation and parturition (Ji Y, Li B, Reed TD, Lorenz JN, Kaetzel MA, and Dedman JR. J Biol Chem 278: 25063-25071, 2003). In the present study, these animals (TG) are evaluated for the effect of inhibition of sarcoplasmic reticulum (SR) CaMKII activity on the contractile characteristics and Ca2+ cycling of myocytes. Analysis of isolated work-performing hearts demonstrated moderate decreases in the maximal rates of contraction and relaxation (+/-dP/dt) in TG mice. The response of the TG hearts to increases in load is reduced. The TG hearts respond to isoproterenol (Iso) in a dose-dependent manner; the contractile properties were reduced in parallel to wild-type hearts. Assessment of isolated cardiomyocytes from TG mice revealed 40-47% decrease in the maximal rates of myocyte shortening and relengthening under both basal and Iso-stimulated conditions. Although twitch Ca2+ transient amplitudes were not significantly altered, the rate of twitch intracellular Ca2+ concentration decline was reduced by approximately 47% in TG myocytes, indicating decreased SR Ca2+ uptake function. Caffeine-induced Ca2+ transients indicated unaltered SR Ca2+ content and Na+/Ca2+ exchange function. Phosphorylation assays revealed an approximately 30% decrease in the phosphorylation of ryanodine receptor Ser2809. Iso stimulation increased the phosphorylation of both phospholamban Ser16 and the ryanodine receptor Ser2809 but not phospholamban Thr17 in TG mice. This study demonstrates that inhibition of SR CaMKII activity at the LSR results in alterations in cardiac contractility and Ca2+ handling in TG hearts.  相似文献   

8.
9.
Phosphorylation of phospholamban (PLB) at Ser16 and/ or Thr17 is believed to release its inhibitory effect on sarcoplasmic reticulum calcium ATPase. Ser16 phosphorylation of PLB has been suggested to cause a conformational change that alters the interaction between the enzyme and protein. Using computer simulations, the conformational sampling of Ser16 phosphorylated PLB in implicit membrane environment is compared here with the unphosphorylated PLB system to investigate these conformational changes. The results suggest that conformational changes in the cytoplasmic domain of PLB upon phosphorylation at Ser16 increase the likelihood of unfavorable interactions with SERCA in the E2 state prompting a conformational switch of SERCA from E2 to E1. Phosphorylation of PLB at Thr17 on the other hand does not appear to affect interactions with SERCA significantly suggesting that the mechanism of releasing the inhibitory effect is different between Thr17 phosphorylated and Ser16 phosphorylated PLB.  相似文献   

10.
The ubiquitously expressed protein glycogen synthase kinase-3 (GSK3) is constitutively active, however its activity is markedly diminished following phosphorylation of Ser21 of GSK3alpha and Ser9 of GSK3beta. Although several kinases are known to phosphorylate Ser21/9 of GSK3, for example Akt, relatively much less is known about the mechanisms that cause the dephosphorylation of GSK3 at Ser21/9. In the present study KCl-induced plasma membrane depolarization of SH-SY5Y cells, which increases intracellular calcium concentrations caused a transient decrease in the phosphorylation of Akt at Thr308 and Ser473, and GSK3 at Ser21/9. Overexpression of the selective protein phosphatase-1 inhibitor protein, inhibitor-2, increased basal GSK3 phosphorylation at Ser21/9 and significantly blocked the KCl-induced dephosphorylation of GSK3beta, but not GSK3alpha. The phosphorylation of Akt was not affected by the overexpression of inhibitor-2. GSK3 activity is known to affect sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) levels. Overexpression of inhibitor-2 or treatment of cells with the GSK3 inhibitors lithium and SB216763 increased the levels of SERCA2. These results indicate that the protein phosphatase-1/inhibitor-2 complex differentially regulates GSK3 dephosphorylation induced by KCl and that GSK3 activity regulates SERCA2 levels.  相似文献   

11.
Inhibitor-1 becomes a potent inhibitor of protein phosphatase 1 when phosphorylated by cAMP-dependent protein kinase at Thr(35). Moreover, Ser(67) of inhibitor-1 serves as a substrate for cyclin-dependent kinase 5 in the brain. Here, we report that dephosphoinhibitor-1 but not phospho-Ser(67) inhibitor-1 was efficiently phosphorylated by protein kinase C at Ser(65) in vitro. In contrast, Ser(67) phosphorylation by cyclin-dependent kinase 5 was unaffected by phospho-Ser(65). Protein kinase C activation in striatal tissue resulted in the concomitant phosphorylation of inhibitor-1 at Ser(65) and Ser(67), but not Ser(65) alone. Selective pharmacological inhibition of protein phosphatase activity suggested that phospho-Ser(65) inhibitor-1 is dephosphorylated by protein phosphatase 1 in the striatum. In vitro studies confirmed these findings and suggested that phospho-Ser(67) protects phospho-Ser(65) inhibitor-1 from dephosphorylation by protein phosphatase 1 in vivo. Activation of group I metabotropic glutamate receptors resulted in the up-regulation of diphospho-Ser(65)/Ser(67) inhibitor-1 in this tissue. In contrast, the activation of N-methyl-d-aspartate-type ionotropic glutamate receptors opposed increases in striatal diphospho-Ser(65)/Ser(67) inhibitor-1 levels. Phosphomimetic mutation of Ser(65) and/or Ser(67) did not convert inhibitor-1 into a protein phosphatase 1 inhibitor. On the other hand, in vitro and in vivo studies suggested that diphospho-Ser(65)/Ser(67) inhibitor-1 is a poor substrate for cAMP-dependent protein kinase. These observations extend earlier studies regarding the function of phospho-Ser(67) and underscore the possibility that phosphorylation in this region of inhibitor-1 by multiple protein kinases may serve as an integrative signaling mechanism that governs the responsiveness of inhibitor-1 to cAMP-dependent protein kinase activation.  相似文献   

12.
To investigate the role of Ca2+/calmodulin-dependent kinase II in cardiac sarcoplasmic reticulum function, transgenic mice were designed and generated to target the expression of a Ca2+/calmodulin-dependent kinase II inhibitory peptide in cardiac longitudinal sarcoplasmic reticulum using a truncated phospholamban transmembrane domain. The expressed inhibitory peptide was highly concentrated in cardiac sarcoplasmic reticulum. This resulted in a 59.7 and 73.6% decrease in phospholamban phosphorylation at threonine 17 under basal and beta-adrenergic stimulated conditions without changing phospholamban phosphorylation at serine 16. Sarcoplasmic reticulum Ca2+ uptake assays showed that the Vmax was decreased by approximately 30% although the apparent affinity for Ca2+ was unchanged in heterozygous hearts. The in vivo measurement of cardiac function showed no significant reductions in positive and negative dP/dt, but a moderate 18% decrease in dP/dt40, indicative of isovolumic contractility, and a 26.1% increase in the time constant of relaxation (tau) under basal conditions. The changes in these parameters indicate a moderate cardiac dysfunction in transgenic mice. Although the 3 and 4-month-old transgenic mice displayed no overt signs of cardiac disease, when stressed by gestation and parturition, the 7-month-old female mice develop dilated heart failure, suggesting the important role of Ca2+/calmodulin-dependent kinase II pathway in the development of cardiac disease.  相似文献   

13.
The delta isoform of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) predominates in the heart. To investigate the role of CaMKII in cardiac function, we made transgenic (TG) mice that express the nuclear delta(B) isoform of CaMKII. The expressed CaMKIIdelta(B) transgene was restricted to the myocardium and highly concentrated in the nucleus. Cardiac hypertrophy was evidenced by an increased left ventricle to body weight ratio and up-regulation of embryonic and contractile protein genes including atrial natriuretic factor, beta-myosin heavy chain, and alpha-skeletal actin. Echocardiography revealed ventricular dilation and decreased cardiac function, which was also observed in hemodynamic measurements from CaMKIIdelta(B) TG mice. Surprisingly, phosphorylation of phospholamban at both Thr(17) and Ser(16) was significantly decreased in the basal state as well as upon adrenergic stimulation. This was associated with diminished sarcoplasmic reticulum Ca(2+) uptake in vitro and altered relaxation properties in vivo. The activity and expression of protein phosphatase 2A were both found to be increased in CaMKII TG mice, and immunoprecipitation studies indicated that protein phosphatase 2A directly associates with CaMKII. Our findings are the first to demonstrate that CaMKII can induce hypertrophy and dilation in vivo and indicate that compensatory increases in phosphatase activity contribute to the resultant phenotype.  相似文献   

14.
The sarcoplasmic reticulum (SR) plays a critical role in mediating cardiac contractility and its function is abnormal in the diabetic heart. However, the mechanisms underlying SR dysfunction in the diabetic heart are not clear. Because protein phosphorylation regulates SR function, this study examined the phosphorylation state of phospholamban, a key SR protein that regulates SR calcium (Ca2+) uptake in the heart. Diabetes was induced in male Sprague-Dawley rats by an injection of streptozotocin (STZ; 65 mg kg(-1) i.v.), and the animals were humanely killed after 6 weeks and cardiac SR function was examined. Depressed cardiac performance was associated with reduced SR Ca2+-uptake activity in diabetic animals. The reduction in SR Ca2+-uptake was consistent with a significant decrease in the level of SR Ca2+-pump ATPase (SERCA2a) protein. The level of phospholamban (PLB) protein was also decreased, however, the ratio of PLB to SERCA2a was increased in the diabetic heart. Depressed SR Ca2+-uptake was also due to a reduction in the phosphorylation of PLB by the Ca2+-calmodulin-dependent protein kinase (CaMK) and cAMP-dependent protein kinase (PKA). Although the activities of the SR-associated Ca2+-calmodulin-dependent protein kinase (CaMK), cAMP-dependent protein kinase (PKA) were increased in the diabetic heart, depressed phosphorylation of PLB could partly be attributed to an increase in the SR-associated protein phosphatase activities. These results suggest that there is increased inhibition of SERCA2a by PLB and this appears to be a major defect underlying SR dysfunction in the diabetic heart.  相似文献   

15.
Canine cardiac sarcoplasmic reticulum vesicles contain intrinsic phospholamban protein phosphatase activity, which is also effective in dephosphorylating phosphorylase a. The phosphatase associated with sarcoplasmic reticulum membranes was solubilized with Triton X-100 and subjected to chromatography on Mono Q HR 5/5 and polylysine-agarose. A single peak of phosphatase activity was eluted from each column and it was coincident for both phospholamban and phosphorylase a, used as substrates. Thermal denaturation of the enzyme resulted in progressive and coincident loss of both phospholamban and phosphorylase a phosphatase activities. Enzymic activity was partially inhibited by protein phosphatase inhibitor 1. Migration of the enzyme during sucrose density gradient ultracentrifugation corresponded to a globular protein with an apparent Mr of 46,000. This enzyme preparation could dephosphorylate both the calcium-calmodulin-dependent as well as the cAMP-dependent sites on phospholamban. Thus, dephosphorylation of phospholamban by this sarcoplasmic reticulum-associated phosphatase may participate in modulating sarcoplasmic reticulum function in cardiac muscle.  相似文献   

16.
Phosphorylation of phospholamban (PLB) at Ser16 (protein kinase A site) and at Thr17 [Ca2+/calmodulin kinase II (CaMKII) site] increases sarcoplasmic reticulum Ca2+ uptake and myocardial contractility and relaxation. In perfused rat hearts submitted to ischemia-reperfusion, we previously showed an ischemia-induced Ser16 phosphorylation that was dependent on beta-adrenergic stimulation and an ischemia and reperfusion-induced Thr17 phosphorylation that was dependent on Ca2+ influx. To elucidate the relationship between these two PLB phosphorylation sites and postischemic mechanical recovery, rat hearts were submitted to ischemia-reperfusion in the absence and presence of the CaMKII inhibitor KN-93 (1 microM) or the beta-adrenergic blocker dl-propranolol (1 microM). KN-93 diminished the reperfusion-induced Thr17 phosphorylation and depressed the recovery of contraction and relaxation after ischemia. dl-Propranolol decreased the ischemia-induced Ser16 phosphorylation but failed to modify the contractile recovery. To obtain further insights into the functional role of the two PLB phosphorylation sites in postischemic mechanical recovery, transgenic mice expressing wild-type PLB (PLB-WT) or PLB mutants in which either Thr17 or Ser16 were replaced by Ala (PLB-T17A and PLB-S16A, respectively) into the PLB-null background were used. Both PLB mutants showed a lower contractile recovery than PLB-WT. However, this recovery was significantly impaired all along reperfusion in PLB-T17A, whereas it was depressed only at the beginning of reperfusion in PLB-S16A. Moreover, the recovery of relaxation was delayed in PLB-T17A, whereas it did not change in PLB-S16A, compared with PLB-WT. These findings indicate that, although both PLB phosphorylation sites are involved in the mechanical recovery after ischemia, Thr17 appears to play a major role.  相似文献   

17.
18.
Inhibitor-1, the first identified endogenous inhibitor of protein phosphatase 1 (PP-1), was previously reported to be a substrate for cyclin-dependent kinase 5 (Cdk5) at Ser67. Further investigation has revealed the presence of an additional Cdk5 site identified by mass spectrometry and confirmed by site-directed mutagenesis as Ser6. Basal levels of phospho-Ser6 inhibitor-1, as detected by a phosphorylation state-specific antibody against the site, existed in specific regions of the brain and varied with age. In the striatum, basal in vivo phosphorylation and dephosphorylation of Ser6 were mediated by Cdk5, PP-2A, and PP-1, respectively. Additionally, calcineurin contributed to dephosphorylation under conditions of high Ca2+. In biochemical assays the function of Cdk5-dependent phosphorylation of inhibitor-1 at Ser6 and Ser67 was demonstrated to be an intramolecular impairment of the ability of inhibitor-1 to be dephosphorylated at Thr35; this effect was recapitulated in two systems in vivo. Dephosphorylation of inhibitor-1 at Thr35 is equivalent to inactivation of the protein, as inhibitor-1 only serves as an inhibitor of PP-1 when phosphorylated by cAMP-dependent kinase (PKA) at Thr35. Thus, inhibitor-1 serves as a critical junction between kinase- and phosphatase-signaling pathways, linking PP-1 to not only PKA and calcineurin but also Cdk5.  相似文献   

19.
The sarcoplasmic reticulum calcium pump (SERCA) and its regulator, phospholamban, are essential components of cardiac contractility. Phospholamban modulates contractility by inhibiting SERCA, and this process is dynamically regulated by β-adrenergic stimulation and phosphorylation of phospholamban. Herein we reveal mechanistic insight into how four hereditary mutants of phospholamban, Arg(9) to Cys, Arg(9) to Leu, Arg(9) to His, and Arg(14) deletion, alter regulation of SERCA. Deletion of Arg(14) disrupts the protein kinase A recognition motif, which abrogates phospholamban phosphorylation and results in constitutive SERCA inhibition. Mutation of Arg(9) causes more complex changes in function, where hydrophobic substitutions such as cysteine and leucine eliminate both SERCA inhibition and phospholamban phosphorylation, whereas an aromatic substitution such as histidine selectively disrupts phosphorylation. We demonstrate that the role of Arg(9) in phospholamban function is multifaceted: it is important for inhibition of SERCA, it increases the efficiency of phosphorylation, and it is critical for protein kinase A recognition in the context of the phospholamban pentamer. Given the synergistic consequences on contractility, it is not surprising that the mutants cause lethal, hereditary dilated cardiomyopathy.  相似文献   

20.
Both Ser(16) and Thr(17) of phospholamban (PLB) are phosphorylated, respectively, by cAMP-dependent protein kinase (PKA) and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). PLB phosphorylation relieves cardiac sarcoplasmic reticulum Ca(2+) pump from inhibition by PLB. Previous studies have suggested that phosphorylation of Ser(16) by PKA is a prerequisite for Thr(17) phosphorylation by CaMKII and is essential to the relaxant effect of beta-adrenergic stimulation. To determine the role of Thr(17) PLB phosphorylation, we investigated the dual-site phosphorylation of PLB in isolated adult rat cardiac myocytes in response to beta(1)-adrenergic stimulation or electrical field stimulation (0. 1-3 Hz) or both. A beta(1)-adrenergic agonist, norepinephrine (10(-9)-10(-6) m), in the presence of an alpha(1)-adrenergic antagonist, prazosin (10(-6) m), selectively increases the PKA-dependent phosphorylation of PLB at Ser(16) in quiescent myocytes. In contrast, electrical pacing induces an opposite phosphorylation pattern, selectively enhancing the CaMKII-mediated Thr(17) PLB phosphorylation in a frequency-dependent manner. When combined, electric stimulation (2 Hz) and beta(1)-adrenergic stimulation lead to dual phosphorylation of PLB and exert a synergistic effect on phosphorylation of Thr(17) but not Ser(16). Frequency-dependent Thr(17) phosphorylation is closely correlated with a decrease in 50% relaxation time (t(50)) of cell contraction, which is independent of, but additive to, the relaxant effect of Ser(16) phosphorylation, resulting in hastened contractile relaxation at high stimulation frequencies. Thus, we conclude that in intact cardiac myocytes, phosphorylation of PLB at Thr(17) occurs in the absence of prior Ser(16) phosphorylation, and that frequencydependent Thr(17) PLB phosphorylation may provide an intrinsic mechanism for cardiac myocytes to adapt to a sudden change of heart rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号