首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Previously we have demonstrated an apoptosis inducing activity for a rat hepatocyte conditioned medium (CM) presumably mediated by acidic isoferritins. Here, we present support for this assumption since isoferritins purified from different rat hepatocyte CM significantly enhanced the frequency of apoptotic cells in primary rat hepatocytes, an effect completely inhibited by a neutralizing anti-H-ferritin antibody. The apoptosis induction appears to be related to a 43 kDa ferritin subunit contained in the isoferritins released from primary hepatocytes, presumably representing a ferritin heavy/light chain heterodimer. In addition, these isoferritins immunologically crossreact with antibodies raised against placental isoferritin p43-PLF (which also contains a 43 kDa ferritin subunit) and melanoma-derived H-chain ferritin, representing ferritin isoforms which reveal immunomodulatory properties. Furthermore, p53 and FasL are upregulated upon isoferritin treatment in a time dependent mode, and apoptosis induction can be suppressed by neutralizing anti-FasL antibodies. Proapoptotic Bid is upregulated too and translocated into mitochondria in primary hepatocytes exposed to the isoferritins purified from the CM. Finally, epidermal growth factor (EGF) and dexamethasone (DEX), which counteract proapoptotic mitochondrial signalling, almost completely abolished the proapoptotic effect of the hepatocyte derived isoferritins. In conclusion, our findings demonstrate that acidic isoferritins with homology to immunomodulatory ferritin isoforms (p43-PLF, melanoma-derived-H-chain ferritin) are released from hepatocytes in vitro, and are able to stimulate upregulation of p53 and mediate apoptosis involving Fas (CD95) signalling as well as addressing the intrinsic mitochondrial proapoptotic pathway.  相似文献   

4.
5.
6.
7.
8.
9.
PUMA (p53 upregulated modulator of apoptosis) is a pro-apoptotic member of the BH3-only subgroup of the Bcl-2 family. It is a key mediator of p53-dependent and p53-independent apoptosis and was identified 10 years ago. The PUMA gene is mapped to the long arm of chromosome 19, a region that is frequently deleted in a large number of human cancers. PUMA mediates apoptosis thanks to its ability to directly bind known anti-apoptotic members of the Bcl-2 family. It mainly localizes to the mitochondria. The binding of PUMA to the inhibitory members of the Bcl-2 family (Bcl-2-like proteins) via its BH3 domain seems to be a critical regulatory step in the induction of apoptosis. It results in the displacement of the proteins Bax and/or Bak. This is followed by their activation and the formation of pore-like structures on the mitochondrial membrane, which permeabilizes the outer mitochondrial membrane, leading to mitochondrial dysfunction and caspase activation. PUMA is involved in a large number of physiological and pathological processes, including the immune response, cancer, neurodegenerative diseases and bacterial and viral infections.  相似文献   

10.
11.
12.
13.
MCF7 breast cancer cell line, carrying a luciferase reporter gene under the control of nuclear factor kappa B (NF-κB)-responsive promoter, was established and used for the screening of fungal organic extracts for their ability to interfere with the NF-κB activation pathway. Twenty-eight crude fungal extracts, out of 242, were found to inhibit NF-κB reporter activity by more than 40%. Furthermore, positive extracts were used to evaluate their antiproliferative activity as well as their ability to influence the phosphorylation and degradation levels of IκBa. Fungal extracts prepared from Marasmius oreades and Cyathus striatus showed significant inhibitory effects on the NF-κB activation pathway. Taken together, our results support the notion of the presence of novel activities that might be utilized as cancer therapeutics.  相似文献   

14.
We have previously shown that UEV1 is up-regulated in all tumor cell lines examined and when SV40-transformed human embryonic kidney cells undergo immortalization; however, it is unclear whether and how UEV1 plays a critical role in this process. UEV1A encodes a ubiquitin conjugating enzyme variant, which is required for Ubc13 (ubiquitin conjugating enzyme) catalyzed poly-ubiquitination of target proteins through Lys63-linked chains. One of the target proteins is NEMO/IKKγ (nuclear factor-κB essential modulator/inhibitor of κB protein kinase), a regulatory subunit of IκB kinase in the NF-κB signaling pathway. In this report, we show that constitutive high-level expression of UEV1A alone in cultured human cells was sufficient to cause a significant increase in NF-κB activity as well as the expression of its target anti-apoptotic protein, Bcl-2 (B-cell leukemia/lymphoma 2). Overexpression of UEV1A also conferred prolonged cell survival under serum-deprived conditions, and protected cells against apoptosis induced by diverse stressing agents. All of the effects of Uev1A were reversible upon suppression of UEV1 expression by RNA interference. Our observations presented in this report provide evidence that Uev1A is a critical regulatory component in the NF-κB signaling pathway in response to environmental stresses and identify UEV1A as a potential proto-oncogene.  相似文献   

15.
16.
For finding the novel inhibitor of nuclear factor κB activity, a series of benzimidazole derivatives were rationally designed, synthesized and systematically studied for their in vitro activities against LPS induced NF-κB inhibition in RAW 264.7 cells using the SEAP assay based on the flexible chalcone JSH ((E)-1-(2-hydroxy-6-(isopentyloxy)phenyl)-3-(4-hydroxy phenyl)prop-2-en-1-one) which was previously reported. Although most of the benzimidazole derivatives showed strong inhibitory activity in low micromolar potency, 2-(4-methoxybenzyl)-1H-benzo[d]imidazole (3m; IC50 = 1.7 μM) and 2-(2-methoxybenzyl)-1H-benzo[d]imidazole (3n; IC50 = 2.4 μM) showed the best inhibition. The structure activity relationship revealed that 2-benzylbenzimidazole scaffold with hydrogen bonding acceptor on phenyl ring appears as a pharmacophore.  相似文献   

17.
18.
The modifications of intracellular redox balance leads to important cellular changes in many cell types. Here, a causal relationship among redox state, granulocytic differentiation induced by all-trans retinoic acid (RA) or dibutyryl cAMP (dbcAMP) and apoptosis have been studied in the human acute promyelocytic leukaemia HL-60 cells. The modulation of intracellular reactive oxygen species levels by d, l-buthionine-(S, R) sulfoximide (BSO), and n-acetyl-l-cysteine (NAC) caused inducer- and time-dependent or stage-specific effects on HL-60 cell growth inhibition, differentiation and subsequent apoptosis. The presence of BSO during the commitment stage suppressed RA—but not dbcAMP-mediated differentiation, while NAC inhibited both. BSO alone and in combination with RA or dbcAMP-induced apoptosis, which was prevented by NAC in dbcAMP—but not in RA-treated cells. Using protein kinase C inhibitor, calphostin C, cross-talk effects between the intracellular redox state and PKC signalling was identified by demonstrating inducer-dependent changes in cell differentiation or apoptosis, which were associated with the changes in DNA-NF-κB binding activity. These observations suggest a critical role of redox state in determining HL-60 cell behaviour and provide new insights into the complex effects of redox perturbations on the intracellular signalling network via the involvement of PKC and NF-κB.  相似文献   

19.
To construct a recombinant adenovirus vector expressing a RNAi for the Nuclear Factor kappa B (NF-κB)/p65 gene and use it to explore the role of the NF-κB pathway on the regulation of proliferation and apoptosis of vascular endothelial cells. A recombinant adenovirus containing a RNAi cassette targeting the p65 gene was constructed, and its silencing effect on p65 was detected by Western blot analysis in ECV304 cells. Expression of the p65 protein in ECV304 cells was efficiently down-regulated by the RNAi adenovirus for more than 6 days. ECV304 cells proliferation and apoptosis were measured using the MTT assay and flow cytometry, respectively. Blocking the NF-κB pathway with the RNAi adenovirus substantially decreased the proliferation of ECV304 cells, but only slightly affected cell apoptosis. We used a NF-κB/p65-targeting RNAi adenovirus to demonstrate the role of the NF-κB pathway in the regulation of ECV304 cell proliferation. This adenovirus may serve as an important tool to study the NF-κB pathway.  相似文献   

20.
Li J  Li Z  Li T  Lin L  Zhang Y  Guo L  Xu Y  Zhao W  Wang P 《Biochemistry. Biokhimii?a》2012,77(2):194-200
O-Linked N-acetylglucosamine (O-GlcNAc) modification of serines/threonines on cytoplasmic proteins is a significant signal regulating cellular processes such as cell cycle, cell development, and cell apoptosis. O-GlcNAcase (OGA) is responsible for the removal of O-GlcNAc, and it thus plays a critical role in O-GlcNAc metabolism. Interestingly, OGA can be cleaved by caspase-3 into two fragments during apoptosis, producing an N-terminal fragment (1–413 a.a.), termed nOGA. Here, using 4-MU-GlcNAc (4-methylumbelliferyl 2-acetamido-2-deoxy-β-D-glucopyranoside) as substrate, we found that the nOGA fragment retains high glycosidase activity. To probe the role of nOGA in apoptosis, it is essential to develop a potent and specific nOGA inhibitor. However, many reported inhibitors active at nanomolar concentrations (including PUGNAc, STZ, GlcNAc-statin, and NAG-thiazoline) against full-length OGA were not potent for nOGA. Next, we screened a small triazole-linked carbohydrate library and first identified compound 4 (4-pyridyl-1-(2′-deoxy-2′-acetamido-β-D-glucopyranosyl)-1,2,3-triazole) as a potent and competitive inhibitor for nOGA. This compound shows 15-fold selectivity for nOGA (K i = 48 μM) over the full-length OGA (K i = 725 μM) and 10-fold selectivity over human lysosomal β-hexosaminidase A&B (Hex A&B) (K i = 502 μM). These results reveal that compound 4 can be used as a potent and selective inhibitor for probing the role of nOGA in biological systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号