首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein phosphorylation/dephosphorylation plays critical roles in stress responses in plants. This report presents a comparative characterization of the serine/threonine PP2A catalytic subunit family in Solanum tuberosum (potato) and S. lycopersicum (tomato), two important food crops of the Solanaceae family, based on the sequence analysis and expression profiles in response to environmental stress. Sequence homology analysis revealed six isoforms in potato and five in tomato clustered into two subfamilies (I and II). The data presented in this work show that the expression of different PP2Ac genes is regulated in response to environmental stresses in potato and tomato plants and suggest that, in general, mainly members of the subfamily I are involved in stress responses in both species. However, the differences found in the expression profiles between potato and tomato suggest divergent roles of PP2A in the plant defense mechanisms against stress in these closely related species.  相似文献   

2.
Li G  Lin F  Xue HW 《Cell research》2007,17(10):881-894
Phospholipase D (PLD) plays a critical role in plant growth and development, as well as in hormone and stress responses. PLD encoding genes constitute a large gene family that are present in higher plants. There are 12 members of the PLD family in Arabidopsis thaliana and several of them have been functionally characterized; however, the members of the PLD family in Oryza sativa remain to be fully described. Through genome-wide analysis, 17 PLD members found in different chromosomes have been identified in rice. Protein domain structural analysis reveals a novel subfamily, besides the C2-PLDs and PXPH-PLDs, that is present in rice - the SP-PLD. SP-PLD harbors a signal peptide instead of the C2 or PXPH domains at the N-terminus. Expression pattern analysis indicates that most PLD-encoding genes are differentially expressed in various tissues, or are induced by hormones or stress conditions, suggesting the involvement of PLD in multiple developmental processes. Transgenic studies have shown that the suppressed expression office PLDβ1 results in reduced sensitivity to exogenous ABA during seed germination. Further analysis of the expression of ABA signaling-related genes has revealed that PLDβ1 stimulates ABA signaling by activating SAPK, thus repressing GAmyb exoression and inhibiting seed germination.  相似文献   

3.
4.
The central importance of protein phosphorylation in plant defense responses has been demonstrated by the isolation of several disease-resistance genes that encode protein kinases. In addition, there are many reports of changes in protein phosphorylation accompanying plant responses to pathogens. In contrast, little is known about the role of protein dephosphorylation in regulating plant defenses. We report that expression of the LePP2Ac1 gene, which encodes a catalytic subunit of the heterotrimeric protein phosphatase 2A (PP2Ac), is rapidly induced in resistant tomato leaves upon inoculation with an avirulent strain of Pseudomonas syringae pv. tomato. By analysis of PP2Ac gene sequences from several plant species, we found that PP2Ac genes cluster into two subfamilies, with LePP2Ac1 belonging to subfamily I. Virus-induced gene silencing (VIGS) in Nicotiana benthamiana was used to suppress expression of genes from subfamily I and not from subfamily II. The PP2Ac-silenced plants had greatly decreased PP2A activity, constitutively expressed pathogenesis-related (PR) genes, and developed localized cell death in stems and leaves. In addition, the plants were more resistant to a virulent strain of P. syringae pv. tabaci and showed an accelerated hypersensitive response (HR) to effector proteins from both P. syringae and the fungal pathogen, Cladosporium fulvum. Thus, catalytic subunits of PP2Ac subfamily I act as negative regulators of plant defense responses likely by de-sensitizing protein phosphorylation cascades.  相似文献   

5.
Control of plant growth is an important aspect of crop productivity and yield in agriculture. Overexpression of the AtCHR12/23 genes in Arabidopsis thaliana reduced growth habit without other morphological changes. These two genes encode Snf2 chromatin remodelling ATPases. Here, we translate this approach to the horticultural crop tomato (Solanum lycopersicum). We identified and cloned the single tomato ortholog of the two Arabidopsis Snf2 genes, designated SlCHR1. Transgenic tomato plants (cv. Micro‐Tom) that constitutively overexpress the coding sequence of SlCHR1 show reduced growth in all developmental stages of tomato. This confirms that SlCHR1 combines the functions of both Arabidopsis genes in tomato. Compared to the wild type, the transgenic seedlings of tomato have significantly shorter roots, hypocotyls and reduced cotyledon size. Transgenic plants have a much more compact growth habit with markedly reduced plant height, severely compacted reproductive structures with smaller flowers and smaller fruits. The results indicate that either GMO‐based or non‐GMO‐based approaches to modulate the expression of chromatin remodelling ATPase genes could develop into methods to control plant growth, for example to replace the use of chemical growth retardants. This approach is likely to be applicable and attractive for any crop for which growth habit reduction has added value.  相似文献   

6.
氨基转移酶是5'-磷酸吡哆醛依赖酶,在植物的生长发育和非生物胁迫的反应中起重要作用。ATⅢ氨基转移酶家族(classⅢ aminotransferase family)是转氨酶家族中一个非常重要的亚家族。本研究利用普通烟草(Nicotiana tabacum)基因组序列信息,鉴定出26个ATⅢ家族成员,对烟草ATⅢ家族进行理化性质分析表明,普通烟草ATⅢ家族成员之间的理化性质差异较大;系统进化和结构域分析显示,烟草ATⅢ家族成员可形成4个分支,同一分支内ATⅢ家族成员的保守结构域的种类和组织形式高度一致;将19个家族成员定位在12条染色体上;分析普通烟草转录组数据,结果显示大多数家族成员在不同组织中都有表达,主要集中在叶脉、打顶后茎和叶、离体叶片等组织。对NtATⅢ1和NtATⅢ2基因的qRT-PCR分析显示,这两个基因主要在植物地上组织中表达。本研究为普通烟草ATⅢ基因的功能研究提供依据。  相似文献   

7.
植物非特异性脂质转移蛋白(non-specific lipid transfer proteins,nsLTP)是一类多基因家族编码碱性蛋白,负责脂肪酸体外结和与膜之间的磷脂转移,在植物生长发育和逆境胁迫响应中扮演着重要角色。目前为止,尚无模式植物毛果杨(Populus trichocarpansLTP家族的研究报导。本研究从全基因组水平对PtrnsLTP家族成员的基因数量、亲缘关系、基因结构、编码蛋白保守基序等特性进行了分析,结果表明:PtrnsLTP家族共由39个基因组成,进化成5个亚家族,其中A亚族含有6个基因、B亚族含有2个、C亚族含有13个、D亚族含有3个、E亚族含有15个。PtrnsLTP家族包含7对旁系同源基因,其中1对大于1,6对Ka/Ks均远小于1,且这6对基因均处于同一个大的进化分支上,进化压力的不同导致基因间的功能出现了分化,编码蛋白均含有Motif 1和 Motif 2保守基序。利用qRT-PCR技术并结合杨树转录组数据对PtrnsLTP的组织表达与盐胁迫响应特性研究发现:各家族成员在毛果杨根、茎和叶中均有表达且经qRT-PCR技术验证后与网站预测结果基本吻合,有11、15和13个成员分别在根、茎和叶中有较高的表达,表明该基因家族参与了杨树不同组织的生长发育;NaCl胁迫下,该家族39个基因中分别有26个成员在根部、14个成员在叶部表达量随着胁迫时间的增加而升高,而32个基因在茎部表现为先升高后降低的趋势。本研究结果对于PtrnsLTP家族基因生物学功能的鉴定与盐胁迫响应基因资源的工作有着积极的推动作用。  相似文献   

8.
Yeast (Saccharomyces cerevisiae) SWI/SNF is a prototype for a large family of ATP-dependent chromatin-remodeling enzymes that facilitate numerous DNA-mediated processes. Swi2/Snf2 is the catalytic subunit of SWI/SNF, and it is the founding member of a novel subfamily of the SF2 superfamily of DNA helicase/ATPases. Here we present a functional analysis of the diagnostic set of helicase/ATPase sequence motifs found within all Swi2p/Snf2p family members. Whereas many of these motifs play key roles in ATP binding and/or hydrolysis, we identify residues within conserved motif V that are specifically required to couple ATP hydrolysis to chromatin-remodeling activity. Interestingly, motif V of the human Swi2p/Snf2p homolog, Brg1p, has been shown to be a possible hot spot for mutational alterations associated with cancers.  相似文献   

9.
The HAP3 gene encodes a subunit of the CCAAT-box-binding factor (CBF), a highly conserved trimeric activator that recognizes and binds the ubiquitous CCAAT promoter element with high affinity. Two types of HAP3 gene have been identified in plant genomes. The LEAFY COTYLEDON1 (LEC1)-type HAP3 genes encode a functionally specialized subunit of CBF, which is expressed specifically in developing seeds. In contrast, most non-LEC1-type HAP3 genes are expressed in various tissues. It has been proposed that the LEC1-type HAP3 genes originated from the duplication and functional divergence of non-LEC1-type HAP3 genes. However, it is not yet known when this duplication event took place or whether the LEC1-type HAP3 genes appeared at the same time as the origin of seed plants. Here we describe a comprehensive comparison of the duplication patterns of HAP3 genes in different plant genomes. We recognize a major expansion of the HAP3 gene family accompanying the origin and early diversification of land plants and postulate that retrotransposition and other mechanisms of gene duplication have been involved in the expansion of the plant HAP3 gene family. We provide evidence that the LEC1-type HAP3 genes originated in nonseed vascular plant genomes and demonstrate that they are inductively expressed under drought stress in nonseed plants. These genes, however, were recruited to a novel regulatory network in the early stages of seed plant evolution and steadily expressed during seed development and maturation.  相似文献   

10.
Molecular analysis of the NAC gene family in rice   总被引:14,自引:0,他引:14  
Genes that encode products containing a NAC domain, such as NO APICAL MERISTEM (NAM) in petunia, CUP-SHAPED COTYLEDON2 (CUC2) and NAP in Arabidopsis thaliana, have crucial functions in plant development. We describe here molecular aspects of the OsNAC genes that encode proteins with NAC domains in rice (Oryza sativa L.). Sequence analysis revealed that the NAC genes in plants can be divided into several subfamilies, such as the NAM, ATAF, and OsNAC3 subfamilies. In rice, OsNAC1 and OsNAC2 are classified in the NAM subfamily, which includes NAM and CUC2, while OsNAC5 and OsNAC6 fall into the ATAF subfamily. In addition to the members of these subfamilies, the rice genome contains the NAC genes OsNAC3, OsNAC4 (both in the OsNAC3 subfamily), OsNAC7, and OsNAC8. These results and Southern analysis indicate that the OsNAC genes constitute a large gene family in the rice genome. Each OsNAC gene is expressed in a specific pattern in different organs, suggesting that this family has diverse and important roles in rice development.  相似文献   

11.
12.
Characterization of plant resistance genes is an important step in understanding plant defense mechanisms. Fusarium oxysporum f sp lycopersici is the causal agent of a vascular wilt disease in tomato. Genes conferring resistance to plant vascular diseases have yet to be described molecularly. Members of a new multigene family, complex I2C, were isolated by map-based cloning from the I2 F. o. lycopersici race 2 resistance locus. The genes show structural similarity to the group of recently isolated resistance genes that contain a nucleotide binding motif and leucine-rich repeats. Importantly, the presence of I2C antisense transgenes abrogated race 2 but not race 1 resistance in otherwise normal plants. Expression of the complete sense I2C-1 transgene conferred significant but partial resistance to F. o. lycopersici race 2. All members of the I2C gene family have been mapped genetically and are dispersed on three different chromosomes. Some of the I2C members cosegregate with other tomato resistance loci. Comparison within the leucine-rich repeat region of I2C gene family members shows that they differ from each other mainly by insertions or deletions.  相似文献   

13.
Characterization of genes responsive to stress is important for efforts on improving stress tolerance of plants. To address components involved in stress tolerance of tomato (Solanum lycopersicum), a stress-responsive gene family encoding A20/AN1 zinc finger proteins was characterized. In the present study, 13 members of this gene family were cloned from tomato cultivar Pusa Ruby and named as Stress Associated Protein (SAP) genes. Out of 13 genes, 12 have been mapped on their respective chromosomes. Expression of these genes in response to cold, heat, salt, desiccation, wounding, abscisic acid, oxidative and submergence stresses was analysed. All tomato SAP genes were found to be responsive to one or other type of environmental stress. The phylogenetic analysis of these genes, along with their orthologs from Solanaceae species suggests the presence of a common set of SAP genes in the studied Solanaceae species. The present study characterizes a SAP gene family, which encodes A20/AN1 zinc finger containing proteins from tomato for the first time. Genes showing high expression in response to a particular stress can be exploited for improving stress tolerance of tomato and other Solanaceae members. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
The SELF-PRUNING gene family in tomato   总被引:6,自引:0,他引:6  
The SELF PRUNING (SP) gene controls the regularity of the vegetative-reproductive switch along the compound shoot of tomato and thus conditions the 'determinate' (sp/sp) and 'indeterminate' (SP_) growth habits of the plant. SP is a developmental regulator which is homologous to CENTRORADIALIS (CEN) from Antirrhinum and TERMINAL FLOWER 1 (TFL1) and FLOWERING LOCUS T (FT) from Arabidopsis. Here we report that SP is a member of a gene family in tomato composed of at least six genes, none of which is represented in the tomato EST collection. Sequence analysis of the SP gene family revealed that its members share homology along their entire coding regions both among themselves and with the six members of the Arabidopsis family. Furthermore, members of the gene family in the two species display a common genomic organization (intron-exon pattern). In tomato, phylogenetically close homologues diverged considerably with respect to their organ expression patterns while SP2I and its closest homologue from Arabidopsis (MFT) exhibited constitutive expression. This research focusing on a plant of sympodial growth habit sets the stage for a functional analysis of this weakly expressed gene family which plays a key role in determining plant architecture.  相似文献   

15.
16.
Ming  Nan  Ma  Nana  Jiao  Baozhen  Lv  Wei  Meng  Qingwei 《Plant Molecular Biology Reporter》2020,38(1):75-94

In plants, C2H2-type zinc finger proteins play important roles in multiple processes, including plant growth and development, as well as biotic and abiotic responses. In the present study, based on the presence of the C2H2 domain (CX2~4CX3FX5LX2HX3~5H), 112 C2H2-type zinc finger proteins were predicted in tomato. Through gene and protein structures analyses and phylogenetic analysis, the 112 C2H2-type zinc finger proteins were divided into five subfamilies. Members of the same subfamily shared similarities in gene and protein structures, while members of different subfamilies contained different numbers of the C2H2 domain. The tissue expression pattern analysis showed that 24 C2H2-type zinc finger proteins are constitutively expressed in all tissues, indicating that they may play important roles in the growth and development of all tissues. In addition, under chilling (4 °C), heat (42 °C), high salinity (200 Mm NaCl), and osmotic (20% PEG) stresses, members of C2H2-type zinc finger family were induced to varying degrees, which suggested that these genes were involved in multiple abiotic stress responses. This study will provide theoretical basis for further research of C2H2-type zinc finger proteins in tomato.

  相似文献   

17.
18.
Brassica napus cv. Topas microspores can be diverted from pollen development toward haploid embryo formation in culture by subjecting them to a heat stress treatment. We show that this switch in developmental pathways is accompanied by the induction of high levels of napin seed storage protein gene expression. Changes in the plant growth or microspore culture conditions were not by themselves sufficient to induce napin gene expression. Specific members of the napin multigene family were cloned from a cDNA library prepared from microspores that had been induced to undergo embryogenesis. The majority of napin clones represented three members (BnmNAP2, BnmNAP3 and BnmNAP4) that, along with a previously isolated napin genomic clone (BngNAP1), constitute the highly conserved BnmNAP subfamily of napin genes. Both RNA gel blot analysis, using a subfamily-specific probe, and histochemical analysis of transgenic plants expressing a BngNAP1 promoter--glucuronidase gene fusion demonstrated that the BnmNAP subfamily is expressed in embryogenic microspores as well as during subsequent stages of microsporic embryo development.  相似文献   

19.
The plant RNase T2 family is divided into two different subfamilies. S-RNases are involved in rejection of self-pollen during the establishment of self-incompatibility in three plant families. S-like RNases, on the other hand, are not involved in self-incompatibility, and although gene expression studies point to a role in plant defense and phosphate recycling, their biological roles are less well understood. Although S-RNases have been subjects of many phylogenetic studies, few have included an extensive analysis of S-like RNases, and genome-wide analyses to determine the number of S-like RNases in fully sequenced plant genomes are missing. We characterized the eight RNase T2 genes present in the Oryza sativa genome; and we also identified the full complement of RNase T2 genes present in other fully sequenced plant genomes. Phylogenetics and gene expression analyses identified two classes among the S-like RNase subfamily. Class I genes show tissue specificity and stress regulation. Inactivation of RNase activity has occurred repeatedly throughout evolution. On the other hand, Class II seems to have conserved more ancestral characteristics; and, unlike other S-like RNases, genes in this class are conserved in all plant species analyzed and most are constitutively expressed. Our results suggest that gene duplication resulted in high diversification of Class I genes. Many of these genes are differentially expressed in response to stress, and we propose that protein characteristics, such as the increase in basic residues can have a defense role independent of RNase activity. On the other hand, constitutive expression and phylogenetic conservation suggest that Class II S-like RNases may have a housekeeping role.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号