首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have recently cloned a novel splice variant of cyclin D2 termed as cycD2SV. CycD2SV overexpression in several immortalized cell lines led to formation of ubiquitinated protein aggregates accompanied by a significant decrease in cell proliferation. Based on immuno co-localization and ultrastructural analysis experiments, cycD2SV protein aggregates were frequently found in various subcellular compartments such as endosomes, autophagosomes, lysosomes and the microtubule organizing centre. Secondary structure analysis revealed that the amino terminal α-helix in cycD2SV is not tightly packed with the cyclin box suggesting a misfolded conformation compared to other cyclins. Deletion analysis suggests that 1–53 amino acid region of cycD2SV may be required for protein aggregation and 54–136 amino acid region may mediate cell cycle inhibition. Based on co-immunoprecipitation experiments, we have shown that cycD2SV binds to cycD2 as well as CDK4. In addition, gene expression analysis demonstrated an upregulation in GADD45α and dynamin 2 mRNA levels in cycD2SV overexpressing cells. These two proteins are known to play critical roles in the DNA damage response and apoptosis pathways. TUNEL experiments were negative for apoptosis, however, cycD2SV expressing cells were more sensitive to cell death induced by external stressors such as trypsinization. Collectively our results suggest that cycD2SV mediates cell cycle inhibition by sequestering endogenous cell cycle proteins, such as cycD2 and CDK4, and possibly targeting them for ubiquitin mediated protein degradation.  相似文献   

3.
Mammalian (or mechanistic) target of rapamycin (mTOR) regulates a wide range of cellular and developmental processes by coordinating signaling responses to mitogens, nutrients, and various stresses. Over the last decade, mTOR has emerged as a master regulator of skeletal myogenesis, controlling multiple stages of the myofiber formation process. In this minireview, we present an emerging view of the signaling network underlying mTOR regulation of myogenesis, which contrasts with the well established mechanisms in the regulation of cell and muscle growth. Current questions for future studies are also highlighted.  相似文献   

4.
We show that a splice variant–derived cyclin B is produced in sea urchin oocytes and embryos. This splice variant protein lacks highly conserved sequences in the COOH terminus of the protein. It is found strikingly abundant in growing oocytes and cells committed to differentiation during embryogenesis. Cyclin B splice variant (CBsv) protein associates weakly in the cell with Xenopus cdc2 and with budding yeast CDC28p. In contrast to classical cyclin B, CBsv very poorly complements a triple CLN deletion in budding yeast, and its microinjection prevents an initial step in MPF activation, leading to an important delay in oocyte meiosis reinitiation. CBsv microinjection in fertilized eggs induces cell cycle delay and abnormal development. We assume that CBsv is produced in growing oocytes to keep them in prophase, and during embryogenesis to slow down cell cycle in cells that will be committed to differentiation.Cyclins are a conserved family of proteins that play a central role in eukaryotic cell division cycle progression, as regulatory subunits of cyclin dependent kinases (CDKs, whose catalytic subunits are homologues of the fission yeast cdc2 protein).1 CDKs are downstream targets of convergent cascades of regulations at critical points of the cell cycle. M-phase–promoting factor (MPF, formerly maturation promoting factor, reference 21), the factor responsible for M-phase entry and progression in mitosis, has been purified three times by biochemical means (7, 19, 36). MPF from starfish, Xenopus, and carp oocytes has been found to be a heterodimer composed of one molecule of cdc2 and one molecule of cyclin B (CB). B type cyclins are archetypal mitotic cyclins, evolutively and functionally related to fission yeast cdc13p. Among CDKs, the regulation of MPF is by far the best understood today. Cyclin B is required for activity, as well for activation and for inhibition of MPF. The cdc2 monomer has never been found active. Its activation is conferred by the CAK-dependent T161-phosphorylation that requires cyclin B association (4, 28, 33). Inhibition of MPF during S- and G2-phases and also by the DNA replication checkpoint mechanism is achieved by wee1-catalyzed phosphorylation of the tyrosine 15 in cyclin B–bound molecules of cdc2 (9, 22). Cyclin B is also likely required for activation of the protein phosphatase cdc25p that specifically dephosphorylates tyrosine 15 and allows MPF amplification and entry into mitosis (5, 37). Finally, targeted proteolysis of cyclin B by an ubiquitin-dependent pathway is the mechanism by which MPF is inactivated and the cell returns to interphase (8). Therefore, the major part of MPF regulation is accounted for by cyclin B synthesis and proteolysis. This was emphasized in simplified early embryogenesis cycles that are composed of a succession of M- and S-phases without intervening G-phases. Cycles in acellular Xenopus egg extracts are driven by MPF as a basic oscillator, whose periodic activity is scheduled strictly by oscillating abundance of cyclin B (24). Accordingly, during the cleavage period of Xenopus embryogenesis, cdc2 tyrosine 15 is never found phosphorylated (3) and checkpoint mechanisms are downregulated.Site-directed mutagenesis as well as protein crystallization have allowed the mapping of some sequences in cyclins involved in these regulations. Crystal structure of the homologous dimer cdk2–cyclin A showed that the cyclin interacts with the cdk via sequences distributed along the so-called cyclin box, a sequence well conserved among all cyclins (14). In the NH2 terminus of mitotic cyclins A and B, a destruction box is required to allow ubiquitination of the protein and its targeted proteolysis in anaphase (8). Mutants that are deleted for this box are stable in mitosis, and their overexpression triggers mitotic arrest. Also in the NH2-terminal region of B type cyclins, a cytoplasmic retention signal (CRS) is presumed to account for differential early prophase localization of nuclear cyclin A and cytoplasmic cyclin B (27). A chimeric cyclin A with the first amino acids of cyclin B remains cytoplasmic until early prophase. Further on, at the beginning of the cyclin box, conserved amino acids in the P-box are thought to be involved in the specific activation of cdc2 by cdc25 (37). Finally, two reports showed that a short COOH-terminal deletion of recombinant cyclins A or B abolished the binding to cdc2 (17, 34), although this region was not found to be directly involved in the physical interaction between cyclin A and cdk2 (14).Here we show that such a COOH-terminal truncation, which removes universally conserved amino acids, is naturally realized in a splice variant of sea urchin cyclin B. Moreover, immunofluorescence experiments suggest this splice variant plays a role in embryogenesis and behaves like a marker of cell lineages in postcleavage embryos.  相似文献   

5.
6.
The renal bumetanide-sensitive Na-K-2Cl cotransporter (NKCC2) is the major salt transport pathway in the apical membrane of the mammalian thick ascending limb. It is differentially spliced and the three major variants (A, B, and F) differ in their localization and transport characteristics. Most knowledge about its regulation comes from experiments in Xenopus oocytes as NKCC2 proved difficult to functionally express in a mammalian system. Here we report the cloning and functional expression of untagged and unmodified versions of the major splice variants from ferret kidney (fNKCC2A, -B, and -F) in human embryonic kidney (HEK) 293 cells. Many NKCC2 antibodies used in this study detected high molecular weight forms of the transfected proteins, probably NKCC2 dimers, but not the monomers. Interestingly, monomers were strongly detected by phosphospecific antibodies directed against phosphopeptides in the regulatory N terminus. Bumetanide-sensitive 86Rb uptake was significantly higher in transfected HEK-293 cells and could be stimulated by incubating cells in a medium containing a low chloride concentration prior the uptake measurements. fNKCC2 was less sensitive to the reduction in chloride concentration than NKCC1. Using HEK-293 cells stably expressing fNKCC2A we also show that co-expression of variant NKCC2AF does not have the dominant-negative effect on NKCC2A activity that was seen in Xenopus oocytes, nor is it trafficked to the cell surface. In addition, fNKCC2AF is neither complex glycosylated nor phosphorylated in its N terminus regulatory region like other variants.  相似文献   

7.
The bacterial RecN protein is involved in the recombinational repair of DNA double-stranded breaks, and recN mutants are sensitive to DNA-damaging agents. Little is known about the biochemical function of RecN. Protein sequence analysis suggests that RecN is related to the SMC (structural maintenance of chromosomes) family of proteins, predicting globular N- and C-terminal domains connected by an extensive coil-coiled domain. The N- and C-domains contain the nucleotide-binding sequences Walker A and Walker B, respectively. We have purified the RecN protein from Deinococcus radiodurans and characterized its DNA-dependent and DNA-independent ATPase activity. The RecN protein hydrolyzes ATP with a kcat of 24 min−1, and this rate is stimulated 4-fold by duplex DNA but not by single-stranded DNA. This DNA-dependent ATP turnover rate exhibits a dependence on the concentration of RecN protein, suggesting that RecN-RecN interactions are required for efficient ATP hydrolysis, and those interactions are stabilized only by duplex DNA. Finally, we show that RecN stimulates the intermolecular ligation of linear DNA molecules in the presence of DNA ligase. This DNA bridging activity is strikingly similar to that of the cohesin complex, an SMC family member, to which RecN is related.  相似文献   

8.
9.
10.
11.
TRPV1是一种非选择性阳离子通道蛋白,可被伤害性热刺激、辣椒素和氢离子等所激活。由于TRPV1在痛觉传导(尤其是炎症情况下的痛觉传导)中起重要作用,所以TRPV1的研究对临床治疗有十分重要的意义,研究也越来越深入。因为TRPV1可被多种刺激所激活,人们推论其有多个剪接变体(splice variant),不久,即证实了此设想。本文对迄今为止发现的TRPV1剪接变体做一简单综述。  相似文献   

12.
13.
14.
15.
16.
17.
Insects are not only major vectors of mammalian viruses, but are also host to insect-restricted viruses that can potentially be transmitted to mammals. While mammalian innate immune responses to arboviruses are well studied, less is known about how mammalian cells respond to viruses that are restricted to infect only invertebrates. Here we demonstrate that IIV-6, a DNA virus of the family Iridoviridae, is able to induce a type I interferon-dependent antiviral immune response in mammalian cells. Although IIV-6 is a DNA virus, we demonstrate that the immune response activated during IIV-6 infection is mediated by the RIG-I-like receptor (RLR) pathway, and not the canonical DNA sensing pathway via cGAS/STING. We further show that RNA polymerase III is required for maximal IFN-β secretion, suggesting that viral DNA is transcribed by this enzyme into an RNA species capable of activating the RLR pathway. Finally, we demonstrate that the RLR-driven mammalian innate immune response to IIV-6 is functionally capable of protecting cells from subsequent infection with the arboviruses Vesicular Stomatitis virus and Kunjin virus. These results represent a novel example of an invertebrate DNA virus activating a canonically RNA sensing pathway in the mammalian innate immune response, which reduces viral load of ensuing arboviral infection.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号