首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Objective

Detailed studies of correlation between HIV-M.tb co-infection and hierarchy declines of CD8+/CD4+ T-cell counts and IFN-γ responses have not been done. We conducted case-control studies to address this issue.

Methods

164 HIV-1-infected individuals comprised of HIV-1+ATB, HIV-1+LTB and HIV-1+TB- groups were evaluated. Immune phenotyping and complete blood count (CBC) were employed to measure CD4+ and CD8+ T-cell counts; T.SPOT.TB and intracellular cytokine staining (ICS) were utilized to detect ESAT6, CFP10 or PPD-specific IFN-γ responses.

Results

There were significant differences in median CD4+ T-cell counts between HIV-1+ATB (164/μL), HIV-1+LTB (447/μL) and HIV-1+TB- (329/μL) groups. Hierarchy low CD4+ T-cell counts (<200/μL, 200-500/μL, >500/μL) were correlated significantly with active TB but not M.tb co-infection. Interestingly, hierarchy low CD8+ T-cell counts were not only associated significantly with active TB but also with M.tb co-infection (P<0.001). Immunologically, HIV-1+ATB group showed significantly lower numbers of ESAT-6-/CFP-10-specific IFN-γ+ T cells than HIV-1+LTB group. Consistently, PPD-specific IFN-γ+CD4+/CD8+ T effector cells in HIV-1+ATB group were significantly lower than those in HIV-1+LTB group (P<0.001).

Conclusions

Hierarchy low CD8+ T-cell counts and effector function in HIV-1-infected individuals are correlated with both M.tb co-infection and active TB. Hierarchy low CD4+ T-cell counts and Th1 effector function in HIV-1+ individuals are associated with increased frequencies of active TB, but not M.tb co-infection.  相似文献   

2.
Stimulating naïve CD8+ T cells with specific antigens and costimulatory signals is insufficient to induce optimal clonal expansion and effector functions. In this study, we show that the activation and differentiation of CD8+ T cells require IL-2 provided by activated CD4+ T cells at the initial priming stage within 0–2.5 hours after stimulation. This critical IL-2 signal from CD4+ cells is mediated through the IL-2Rβγ of CD8+ cells, which is independent of IL-2Rα. The activation of IL-2 signaling advances the restriction point of the cell cycle, and thereby expedites the entry of antigen-stimulated CD8+ T-cell into the S phase. Besides promoting cell proliferation, IL-2 stimulation increases the amount of IFNγ and granzyme B produced by CD8+ T cells. Furthermore, IL-2 at priming enhances the ability of P14 effector cells generated by antigen activation to eradicate B16.gp33 tumors in vivo. Therefore, our studies demonstrate that a full CD8+ T-cell response is elicited by a critical temporal function of IL-2 released from CD4+ T cells, providing mechanistic insights into the regulation of CD8+ T cell activation and differentiation.  相似文献   

3.
4.
The class IB phosphoinositide 3-kinase gamma enzyme complex (PI3Kγ) functions in multiple signaling pathways involved in leukocyte activation and migration, making it an attractive target in complex human inflammatory diseases including MS. Here, using pik3cg −/− mice and a selective PI3Kγ inhibitor, we show that PI3Kγ promotes development of experimental autoimmune encephalomyelitis (EAE). In pik3cg−/− mice, EAE is markedly suppressed and fewer leukocytes including CD4+ and CD8+ T cells, granulocytes and mononuclear phagocytes infiltrate the CNS. CD4+ T cell priming in secondary lymphoid organs is reduced in pik3cg−/− mice following immunisation. This is attributable to defects in DC migration concomitant with a failure of full T cell activation following TCR ligation in the absence of p110γ. Together, this results in suppressed autoreactive T cell responses in pik3cg−/− mice, with more CD4+ T cells undergoing apoptosis and fewer cytokine-producing Th1 and Th17 cells in lymphoid organs and the CNS. When administered from onset of EAE, the orally active PI3Kγ inhibitor AS605240 caused inhibition and reversal of clinical disease, and demyelination and cellular pathology in the CNS was reduced. These results strongly suggest that inhibitors of PI3Kγ may be useful therapeutics for MS.  相似文献   

5.
Memory formation is a hallmark of T cell-mediated immunity, but how differentiation into either short-lived effector cells (SLECs, CD127KLRG1+) or memory precursors cells (MPECs, CD127+KLRG1) and subsequent regulation of long-term memory is adjusted is incompletely understood. Here, we show that loss of the nuclear orphan receptor NR2F6 in germ-line Nr2f6-deficient mice enhances antigen-specific CD8+ memory formation up to 70 days after bacterial infection with Listeria monocytogenes (LmOVA) and boosts inflammatory IFN-γ, TNFα, and IL-2 cytokine recall responses. Adoptive transfer experiments using Nr2f6−/− OT-I T-cells showed that the augmented memory formation is CD8+ T-cell intrinsic. Although the relative difference between the Nr2f6+/+ and Nr2f6−/− OT-I memory compartment declines over time, Nr2f6-deficient OT-I memory T cells mount significantly enhanced IFN-γ responses upon reinfection with increased clonal expansion and improved host antigen-specific CD8+ T-cell responses. Following a secondary adoptive transfer into naïve congenic mice, Nr2f6-deficient OT-I memory T cells are superior in clearing LmOVA infection. Finally, we show that the commitment to enhanced memory within Nr2f6-deficient OT-I T cells is established in the early phases of the antibacterial immune response and is IFN-γ mediated. IFN-γ blocking normalized MPEC formation of Nr2f6-deficient OT-I T cells. Thus, deletion or pharmacological inhibition of NR2F6 in antigen-specific CD8+ T cells may have therapeutic potential for enhancing early IFN-γ production and consequently the functionality of memory CD8+ T cells in vivo.Subject terms: Interferons, Bacterial infection  相似文献   

6.
Efficient infection control requires potent T-cell responses at sites of pathogen replication. However, the regulation of T-cell effector function in situ remains poorly understood. Here, we show key differences in the regulation of effector activity between CD4+ and CD8+ T-cells during skin infection with HSV-1. IFN-γ-producing CD4+ T cells disseminated widely throughout the skin and draining lymph nodes (LN), clearly exceeding the epithelial distribution of infectious virus. By contrast, IFN-γ-producing CD8+ T cells were only found within the infected epidermal layer of the skin and associated hair follicles. Mechanistically, while various subsets of lymphoid- and skin-derived dendritic cells (DC) elicited IFN-γ production by CD4+ T cells, CD8+ T cells responded exclusively to infected epidermal cells directly presenting viral antigen. Notably, uninfected cross-presenting DCs from both skin and LNs failed to trigger IFN-γ production by CD8+ T-cells. Thus, we describe a previously unappreciated complexity in the regulation of CD4+ and CD8+ T-cell effector activity that is subset-specific, microanatomically distinct and involves largely non-overlapping types of antigen-presenting cells (APC).  相似文献   

7.
In vitro CD4+ T cell differentiation systems have made important contributions to understanding the mechanisms underlying the differentiation of naive CD4+ T cells into effector cells with distinct biological functions. Mature CD4+ T cells expressing CD8αα homodimers are primarily found in the intestinal mucosa of men and mice, and to a lesser extent in other tissues such as peripheral blood. Although CD4+CD8α+ T cells are easily identified, very little is known about their development and immunological functions. It has been reported, however, that CD4+CD8α+ T cells possess regulatory properties. In this report, we present a novel in vitro differentiation system where CD4+ T cells are stimulated to become CD4+CD8α+ T cells in the presence of TGF-β, IL-7 and IFN-γ, resulting in cells with very similar features as CD4+CD8α+ intraepithelial lymphocytes. This novel in vitro differentiation culture should provide a powerful and tractable tool for dissecting the differentiation and biological functions of CD4+CD8α+ T cells.  相似文献   

8.
Polyfunctional CD4 or CD8 T cells are proposed to represent a correlate of immune control for persistent viruses as well as for vaccine mediated protection against infection. A well-suited methodology to study complex functional phenotypes of antiviral T cells is the combined staining of intracellular cytokines and phenotypic marker expression using polychromatic flow cytometry. In this study we analyzed the effect of an overnight resting period at 37°C on the quantity and functionality of HIV-1, EBV, CMV, HBV and HCV specific CD4 and CD8 T-cell responses in a cohort of 21 individuals. We quantified total antigen specific T cells by multimer staining and used 10-color intracellular cytokine staining (ICS) to determine IFNγ, TNFα, IL2 and MIP1β production. After an overnight resting significantly higher numbers of functionally active T cells were detectable by ICS for all tested antigen specificities, whereas the total number of antigen specific T cells determined by multimer staining remained unchanged. Overnight resting shifted the quality of T-cell responses towards polyfunctionality and increased antigen sensitivity of T cells. Our data suggest that the observed effect is mediated by T cells rather than by antigen presenting cells. We conclude that overnight resting of PBMC prior to ex vivo analysis of antiviral T-cell responses represents an efficient method to increase sensitivity of ICS-based methods and has a prominent impact on the functional phenotype of T cells.  相似文献   

9.
Control of infection with Mycobacterium tuberculosis (Mtb) requires Th1-type immunity, of which CD8+ T cells play a unique role. High frequency Mtb-reactive CD8+ T cells are present in both Mtb-infected and uninfected humans. We show by limiting dilution analysis that nonclassically restricted CD8+ T cells are universally present, but predominate in Mtb-uninfected individuals. Interestingly, these Mtb-reactive cells expressed the Vα7.2 T-cell receptor (TCR), were restricted by the nonclassical MHC (HLA-Ib) molecule MR1, and were activated in a transporter associated with antigen processing and presentation (TAP) independent manner. These properties are all characteristics of mucosal associated invariant T cells (MAIT), an “innate” T-cell population of previously unknown function. These MAIT cells also detect cells infected with other bacteria. Direct ex vivo analysis demonstrates that Mtb-reactive MAIT cells are decreased in peripheral blood mononuclear cells (PBMCs) from individuals with active tuberculosis, are enriched in human lung, and respond to Mtb-infected MR1-expressing lung epithelial cells. Overall, these findings suggest a generalized role for MAIT cells in the detection of bacterially infected cells, and potentially in the control of bacterial infection.  相似文献   

10.

Background

Antigen-specific IFN-γ producing CD4+ T cells are the main mediators of protection against Mycobacterium tuberculosis infection both under natural conditions and following vaccination. However these cells are responsible for lung damage and poor vaccine efficacy when not tightly controlled. Discovering new tools to control nonprotective antigen-specific IFN-γ production without affecting protective IFN-γ is a challenge in tuberculosis research.

Methods and Findings

Immunization with DNA encoding Ag85B, a candidate vaccine antigen of Mycobacterium tuberculosis, elicited in mice a low but protective CD4+ T cell-mediated IFN-γ response, while in mice primed with DNA and boosted with Ag85B protein a massive increase in IFN-γ response was associated with loss of protection. Both protective and non-protective Ag85B-immunization generated antigen-specific CD8+ T cells which suppressed IFN-γ-secreting CD4+ T cells. However, ex vivo ligation of 4-1BB, a member of TNF-receptor super-family, reduced the massive, non-protective IFN-γ responses by CD4+ T cells in protein-boosted mice without affecting the low protective IFN-γ-secretion in mice immunized with DNA. This selective inhibition was due to the induction of 4-1BB exclusively on CD8+ T cells of DNA-primed and protein-boosted mice following Ag85B protein stimulation. The 4-1BB-mediated IFN-γ inhibition did not require soluble IL-10, TGF-β, XCL-1 and MIP-1β. In vivo Ag85B stimulation induced 4-1BB expression on CD8+ T cells and in vivo 4-1BB ligation reduced the activation, IFN-γ production and expansion of Ag85B-specific CD4+ T cells of DNA-primed and protein-boosted mice.

Conclusion/Significance

Antigen-specific suppressor CD8+ T cells are elicited through immunization with the mycobacterial antigen Ag85B. Ligation of 4-1BB receptor further enhanced their suppressive activity on IFN-γ-secreting CD4+ T cells. The selective expression of 4-1BB only on CD8+ T cells in mice developing a massive, non-protective IFN-γ response opens novel strategies for intervention in tuberculosis pathology and vaccination through T-cell co-stimulatory-based molecular targeting.  相似文献   

11.
CD8 T-cells contribute to control of Mycobacterium tuberculosis infection, but little is known about the quality of the CD8 T-cell response in subjects with latent infection and in patients with active tuberculosis disease. CD8 T-cells recognizing epitopes from 6 different proteins of Mycobacterium tuberculosis were detected by tetramer staining. Intracellular cytokines staining for specific production of IFN-γ and IL-2 was performed, complemented by phenotyping of memory markers on antigen-specific CD8 T-cells. The ex-vivo frequencies of tetramer-specific CD8 T-cells in tuberculous patients before therapy were lower than in subjects with latent infection, but increased at four months after therapy to comparable percentages detected in subjects with latent infection. The majority of CD8 T-cells from subjects with latent infection expressed a terminally-differentiated phenotype (CD45RA+CCR7). In contrast, tuberculous patients had only 35% of antigen-specific CD8 T-cells expressing this phenotype, while containing higher proportions of cells with an effector memory- and a central memory-like phenotype, and which did not change significantly after therapy. CD8 T-cells from subjects with latent infection showed a codominance of IL-2+/IFN-γ+ and IL-2/IFN-γ+ T-cell populations; interestingly, only the IL-2+/IFN-γ+ population was reduced or absent in tuberculous patients, highly suggestive of a restricted functional profile of Mycobacterium tuberculosis-specific CD8 T-cells during active disease. These results suggest distinct Mycobacterium tuberculosis specific CD8 T-cell phenotypic and functional signatures between subjects which control infection (subjects with latent infection) and those who do not (patients with active disease).  相似文献   

12.
A critical step during intrathymic T-cell development is the transition of CD4+ CD8+ double-positive (DP) cells to the major histocompatibility complex class I (MHC-I)-restricted CD4 CD8+ and MHC-II-restricted CD4+ CD8 single-positive (SP) cell stage. Here, we identify a novel gene that is essential for this process. Through the T-cell phenotype-based screening of N-ethyl-N-nitrosourea (ENU)-induced mutant mice, we established a mouse line in which numbers of CD4 and CD8 SP thymocytes as well as peripheral CD4 and CD8 T cells were dramatically reduced. Using linkage analysis and DNA sequencing, we identified a missense point mutation in a gene, E430004N04Rik (also known as themis), that does not belong to any known gene family. This orphan gene is expressed specifically in DP and SP thymocytes and peripheral T cells, whereas in mutant thymocytes the levels of protein encoded by this gene were drastically reduced. We generated E430004N04Rik-deficient mice, and their phenotype was virtually identical to that of the ENU mutant mice, thereby confirming that this gene is essential for the development of SP thymocytes.The differentiation step from the double-positive (DP) to single-positive (SP) thymocyte stage is critically regulated by signals originating from the T-cell receptor α/β (TCRα/β) expressed on their surface (3, 5, 16, 17). By using reverse genetic approaches by knocking out or overexpressing various genes that are expected to be involved in TCR signaling, including its ligand major histocompatibility complex molecules and coreceptors CD4 and CD8, the roles of these genes in T-cell development have been investigated intensively (11, 12). However, to identify totally unknown mechanisms in T-cell development, the forward genetic approach is required. N-ethyl-N-nitrosourea (ENU) is a potent mutagen that randomly induces point mutations throughout the genome in a dose-dependent manner, and ENU mutagenesis has been a representative forward genetic strategy (4, 15). We have been screening phenotypes of ENU-mutagenized mice, focusing on defects in T-cell development.  相似文献   

13.
In Chagas disease, CD8+ T-cells are critical for the control of Trypanosoma cruzi during acute infection. Conversely, CD8+ T-cell accumulation in the myocardium during chronic infection may cause tissue injury leading to chronic chagasic cardiomyopathy (CCC). Here we explored the role of CD8+ T-cells in T. cruzi-elicited heart injury in C57BL/6 mice infected with the Colombian strain. Cardiomyocyte lesion evaluated by creatine kinase-MB isoenzyme activity levels in the serum and electrical abnormalities revealed by electrocardiogram were not associated with the intensity of heart parasitism and myocarditis in the chronic infection. Further, there was no association between heart injury and systemic anti-T. cruzi CD8+ T-cell capacity to produce interferon-gamma (IFNγ) and to perform specific cytotoxicity. Heart injury, however, paralleled accumulation of anti-T. cruzi cells in the cardiac tissue. In T. cruzi infection, most of the CD8+ T-cells segregated into IFNγ+ perforin (Pfn)neg or IFNγnegPfn+ cell populations. Colonization of the cardiac tissue by anti-T. cruzi CD8+Pfn+ cells paralleled the worsening of CCC. The adoptive cell transfer to T. cruzi-infected cd8 −/− recipients showed that the CD8+ cells from infected ifnγ−/− pfn +/+ donors migrate towards the cardiac tissue to a greater extent and caused a more severe cardiomyocyte lesion than CD8+ cells from ifnγ +/+ pfn −/− donors. Moreover, the reconstitution of naïve cd8 −/− mice with CD8+ cells from naïve ifnγ +/+ pfn −/− donors ameliorated T. cruzi-elicited heart injury paralleled IFNγ+ cells accumulation, whereas reconstitution with CD8+ cells from naïve ifnγ −/− pfn +/+ donors led to an aggravation of the cardiomyocyte lesion, which was associated with the accumulation of Pfn+ cells in the cardiac tissue. Our data support a possible antagonist effect of CD8+Pfn+ and CD8+IFNγ+ cells during CCC. CD8+IFNγ+ cells may exert a beneficial role, whereas CD8+Pfn+ may play a detrimental role in T. cruzi-elicited heart injury.  相似文献   

14.
Induction of antigen-specific CD8+ T cells bearing a high-avidity T-cell receptor (TCR) is thought to be an important factor in antiviral and antitumor immune responses. However, the relationship between TCR diversity and functional avidity of epitope-specific CD8+ T cells accumulating in the central nervous system (CNS) during viral infection is unknown. Hence, analysis of T-cell diversity at the clonal level is important to understand the fate and function of virus-specific CD8+ T cells. In this study, we examined the Vβ diversity and avidity of CD8+ T cells specific to the predominant epitope (VP2121-130) of Theiler''s murine encephalomyelitis virus. We found that Vβ6+ CD8+ T cells, associated with epitope specificity, predominantly expanded in the CNS during viral infection. Further investigations of antigen-specific Vβ6+ CD8+ T cells by CDR3 spectratyping and sequencing indicated that distinct T-cell clonotypes are preferentially increased in the CNS compared to the periphery. Among the epitope-specific Vβ6+ CD8+ T cells, MGX-Jβ1.1 motif-bearing cells, which could be found at a high precursor frequency in naïve mice, were expanded in the CNS and tightly associated with gamma interferon production. These T cells displayed moderate avidity for the cognate epitope rather than the high avidity normally observed in memory/effector T cells. Therefore, our findings provide new insights into the CD8+ T-cell repertoire during immune responses to viral infection in the CNS.Theiler''s murine encephalomyelitis virus (TMEV) is a member of the Cardiovirus genus within the Picornaviridae family (43). This virus is a common enteric pathogen among wild mice but rarely causes neurological disease (57). However, when it infects susceptible mice (e.g., the SJL/J [SJL] strain) intracerebrally, it reproducibly induces a chronic immune-mediated demyelinating disease that has been studied as an infectious model of human multiple sclerosis (MS) (10, 30). In contrast, infection of resistant mice like those of the C57BL/6 (B6) strain results in strong antiviral immune responses that clear the virus effectively and prevent disease development (24, 31). Therefore, immune responses in B6 mice have been often compared to those in susceptible SJL mice to understand the nature of protective versus pathogenic immunity in these mice.It has been shown that the major histocompatibility complex (MHC) H-2D locus is a critical genetic factor for resistance to TMEV-induced demyelinating disease (9, 49). For example, expression of the H-2Db transgene makes susceptible FVB mice resistant by inducing strong H-2Db-restricted VP2121-130-specific CD8+ T-cell responses (36). This acquired resistance is abolished when VP2121-130-specific T cells are tolerized by introducing the VP2 transgene (45). These results strongly suggest that CD8+ T cells generated in the presence of H-2Db are critical for viral clearance from the central nervous system (CNS). Since the cardinal difference between the resistant B6 and susceptible SJL strains is the quantity, not the quality, of virus-specific CD8+ T cells (23, 32), strong CD8+ T-cell responses are probably required to prevent viral persistence and the consequent development of demyelinating disease. More than threefold more virus-specific CD8+ T cells were found in the CNSs of resistant B6 mice than in those of susceptible SJL mice at the acute phase of infection. Thus, the level of virus-specific CD8+ T cells at an early phase of the immune response may be a critical factor in resistance to the disease.Many recent investigations indicate that oligoclonal CD8+ T cells accumulate in the CNSs of MS patients (4, 38, 51). In addition, CD8+ T cells may also induce the development of experimental autoimmune encephalomyelitis (EAE) (54). Therefore, clonal expansion of certain CD8+ T cells may be associated with the pathogenesis of demyelinating diseases. However, B6 mice, which are resistant to TMEV-induced demyelinating disease, induce strong CD8+ T-cell responses to a single predominant epitope (VP2121-130), i.e., ≥70% of CNS-infiltrating CD8+ T cells (41, 42). These CD8+ T cells result in effective viral clearance yet remain at a low level in the CNS more than 120 days postinfection (dpi) without detectable pathology (42). This inconsistency led us to investigate the shape and quality of the T-cell receptor (TCR) repertoire accumulating in the CNSs of B6 mice.The CD8+ T-cell responses induced after viral infection have previously been investigated with other animal viruses, including influenza virus, lymphocytic choriomeningitis virus (LCMV), mouse hepatitis virus (MHV), and Borna disease virus (11, 14, 35, 47, 58). Among these models, the detailed T-cell Vβ repertoire in the CNS was described only in the MHV model (46). CD8+ T-cell responses against TMEV in B6 mice are primarily against a single predominant epitope (22, 36, 41). However, virtually no study of the TCR Vβ repertoires of virus-specific CD8+ T cells has been reported. Furthermore, it is not yet known whether a particular TCR Vβ repertoire is associated with the avidity and/or function of CD8+ T cells in the CNS. Since protective versus pathogenic CD8+ T cells may correlate with their Vβ repertoire and T-cell function, these studies may help to elucidate the underlying mechanisms of protection versus pathogenesis of CD8+ T cells in the CNS.In this study, we have addressed several important questions about the CD8+ T-cell repertoire in the CNS. First, what is the pattern of Vβ usage in TMEV-infected B6 mice? Second, are there differences in the antigen-specific CD8+ T-cell clonotypes between the CNS and periphery? Third, are the T-cell clonotypes maintained in the CNS during the viral infection? Fourth, what is the functional avidity of T cells accumulating in the CNS during this virus infection? Last, what possible factors are associated with repertoire selection and expansion in the CNS? Our results show that Vβ6+ CD8+ T cells preferentially expand in the CNS during viral infection. Further analyses of the CDR3 region of antigen-specific Vβ6+ CD8+ T cells by spectratyping and sequencing indicate that distinct T-cell clonotypes are expanded in the CNS compared to those in the periphery. T cells expressing a particular Vβ6-CDR3-Jβ1.1 sequence are preferentially retained in the CNS during the course of viral infection. Interestingly, these T cells are capable of producing gamma interferon (IFN-γ) upon stimulation and display moderate avidity for the cognate epitope. We believe that our findings will provide important information regarding the CD8+ T-cell repertoire during viral infection and that these results may help to provide a better understanding of antiviral CD8+ T-cell immunity in the CNS.  相似文献   

15.
T-cell immune responses modulated by T-cell immunoglobulin and mucin domain-containing molecule 3 (Tim-3) during Mycobacterium tuberculosis (Mtb) infection in humans remain poorly understood. Here, we found that active TB patients exhibited increases in numbers of Tim-3-expressing CD4+ and CD8+ T cells, which preferentially displayed polarized effector memory phenotypes. Consistent with effector phenotypes, Tim-3+CD4+ and Tim-3+CD8+ T-cell subsets showed greater effector functions for producing Th1/Th22 cytokines and CTL effector molecules than Tim-3 counterparts, and Tim-3-expressing T cells more apparently limited intracellular Mtb replication in macrophages. The increased effector functions for Tim-3-expressing T cells consisted with cellular activation signaling as Tim-3+CD4+ and Tim-3+CD8+ T-cell subsets expressed much higher levels of phosphorylated signaling molecules p38, stat3, stat5, and Erk1/2 than Tim-3- controls. Mechanistic experiments showed that siRNA silencing of Tim-3 or soluble Tim-3 treatment interfering with membrane Tim-3-ligand interaction reduced de novo production of IFN-γ and TNF-α by Tim-3-expressing T cells. Furthermore, stimulation of Tim-3 signaling pathways by antibody cross-linking of membrane Tim-3 augmented effector function of IFN-γ production by CD4+ and CD8+ T cells, suggesting that Tim-3 signaling helped to drive stronger effector functions in active TB patients. This study therefore uncovered a previously unknown mechanism for T-cell immune responses regulated by Tim-3, and findings may have implications for potential immune intervention in TB.  相似文献   

16.
The antiviral role of CD4+ T cells in virus-induced pathologies of the central nervous system (CNS) has not been explored extensively. Control of neurotropic mouse hepatitis virus (JHMV) requires the collaboration of CD4+ and CD8+ T cells, with CD8+ T cells providing direct perforin and gamma interferon (IFN-γ)-mediated antiviral activity. To distinguish bystander from direct antiviral contributions of CD4+ T cells in virus clearance and pathology, memory CD4+ T cells purified from wild type (wt), perforin-deficient (PKO), and IFN-γ-deficient (GKO) immune donors were transferred to immunodeficient SCID mice prior to CNS challenge. All three donor CD4+ T-cell populations controlled CNS virus replication at 8 days postinfection, indicating IFN-γ- and perforin-independent antiviral function. Recipients of GKO CD4+ T cells succumbed more rapidly to fatal disease than untreated control infected mice. In contrast, wt and PKO donor CD4+ T cells cleared infectious virus to undetectable levels and protected from fatal disease. Recipients of all CD4+ T-cell populations exhibited demyelination. However, it was more severe in wt CD4+ T-cell recipients. These data support a role of CD4+ T cells in virus clearance and demyelination. Despite substantial IFN-γ-independent antiviral activity, IFN-γ was crucial in providing protection from death. IFN-γ reduced neutrophil accumulation and directed macrophages to white matter but did not ameliorate myelin loss.  相似文献   

17.
18.
The objective of this study was to functionally assess gamma/delta (γδ) T cells following pathogenic human immunodeficiency virus (HIV) infection of humans and nonpathogenic simian immunodeficiency virus (SIV) infection of sooty mangabeys. γδ T cells were obtained from peripheral blood samples from patients and sooty mangabeys that exhibited either a CD4-healthy (>200 CD4+ T cells/μl blood) or CD4-low (<200 CD4 cells/μl blood) phenotype. Cytokine flow cytometry was utilized to assess production of Th1 cytokines tumor necrosis factor alpha and gamma interferon following ex vivo stimulation with either phorbol myristate acetate/ionomycin or the Vδ2 γδ T-cell receptor agonist isopentenyl pyrophosphate. Sooty mangabeys were observed to have higher percentages of γδ T cells in their peripheral blood than humans did. Following stimulation, γδ T cells from SIV-positive (SIV+) mangabeys maintained or increased their ability to express the Th1 cytokines regardless of CD4+ T-cell levels. In contrast, HIV-positive (HIV+) patients exhibited a decreased percentage of γδ T cells expressing Th1 cytokines following stimulation. This dysfunction is primarily within the Vδ2+ γδ T-cell subset which incurred both a decreased overall level in the blood and a reduced Th1 cytokine production. Patients treated with highly active antiretroviral therapy exhibited a partial restoration in their γδ T-cell Th1 cytokine response that was intermediate between the responses of the uninfected and HIV+ patients. The SIV+ sooty mangabey natural hosts, which do not proceed to clinical AIDS, provide evidence that γδ T-cell dysfunction occurs in HIV+ patients and may contribute to HIV disease progression.  相似文献   

19.

Background

Recently we and others have identified CD8 and CD4 T cell epitopes within the highly expressed M. tuberculosis protein TB10.4. This has enabled, for the first time, a comparative study of the dynamics and function of CD4 and CD8 T cells specific for epitopes within the same protein in various stages of TB infection.

Methods and Findings

We focused on T cells directed to two epitopes in TB10.4; the MHC class I restricted epitope TB10.4 3–11 (CD8/10.4 T cells) and the MHC class II restricted epitope TB10.4 74–88 (CD4/10.4 T cells). CD4/10.4 and CD8/10.4 T cells displayed marked differences in terms of expansion and contraction in a mouse TB model. CD4/10.4 T cells dominated in the early phase of infection whereas CD8/10.4 T cells were expanded after week 16 and reached 5–8 fold higher numbers in the late phase of infection. In the early phase of infection both CD4/10.4 and CD8/10.4 T cells were characterized by 20–25% polyfunctional cells (IL-2+, IFN-γ+, TNF-α+), but whereas the majority of CD4/10.4 T cells were maintained as polyfunctional T cells throughout infection, CD8/10.4 T cells differentiated almost exclusively into effector cells (IFN-γ+, TNF-α+). Both CD4/10.4 and CD8/10.4 T cells exhibited cytotoxicity in vivo in the early phase of infection, but whereas CD4/10.4 cell mediated cytotoxicity waned during the infection, CD8/10.4 T cells exhibited increasing cytotoxic potential throughout the infection.

Conclusions/Significance

Our results show that CD4 and CD8 T cells directed to epitopes in the same antigen differ both in their kinetics and functional characteristics throughout an infection with M. tuberculosis. In addition, the observed strong expansion of CD8 T cells in the late stages of infection could have implications for the development of post exposure vaccines against latent TB.  相似文献   

20.
In this cross-sectional study we evaluated T-cell responses using several assays to determine immune correlates of HIV control that distinguish untreated viraemic controllers (VC) from noncontrollers (NC) with similar CD4 counts. Samples were taken from 65 ART-naïve chronically HIV-infected VC and NC from Thailand with matching CD4 counts in the normal range (>450 cells/μl). We determined HIVp24-specific T-cell responses using standard Interferon-gamma (IFNγ) ELISpot assays, and compared the functional quality of HIVp24-specific CD8+ T-cell responses using polychromatic flow cytometry. Finally, in vitro HIV suppression assays were performed to evaluate directly the activity of CD8+ T cells in HIV control. Autologous CD4+ T cells were infected with primary patient-derived HIV isolates and the HIV suppressive activity of CD8+ T cells was determined after co-culture, measuring production of HIVp24 Ag by ELISA. The HIVp24-specific T-cell responses of VC and NC could not completely be differentiated through measurement of IFNγ-producing cells using ELISpot assays, nor by the absolute cell numbers of polyfunctional HIVp24-specific CD8+ T cells. However, in vitro HIV suppression assays showed clear differences between VC and NC. HIV suppressive activity, mediated by either ex vivo unstimulated CD8+ T cells or HIVp24-specific T-cell lines, was significantly greater using cells from VC than NC cells. Additionally, we were able to demonstrate a significant correlation between the level of HIV suppressive activity mediated by ex vivo unstimulated CD8+ T cells and plasma viral load (pVL) (Spearman r = -0.7345, p = 0.0003). This study provides evidence that in vitro HIV suppression assays are the most informative in the functional evaluation of CD8+ T-cell responses and can distinguish between VC and NC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号