共查询到20条相似文献,搜索用时 15 毫秒
1.
Human bronchial epithelial cells are needed for cell models of disease and to investigate the effect of excipients and pharmacologic agents on the function and structure of human epithelial cells. Here we describe in detail the method of growing bronchial epithelial cells from bronchial airway tissue that is harvested by the surgeon at the times of lung surgery (e.g. lung cancer or lung volume reduction surgery). With ethics approval and informed consent, the surgeon takes what is needed for pathology and provides us with a bronchial portion that is remote from the diseased areas. The tissue is then used as a source of explants that can be used for growing primary bronchial epithelial cells in culture. Bronchial segments about 0.5-1cm long and ≤1cm in diameter are rinsed with cold EBSS and excess parenchymal tissue is removed. Segments are cut open and minced into 2-3mm3 pieces of tissue. The pieces are used as a source of primary cells. After coating 100mm culture plates for 1-2 hr with a combination of collagen (30 μg/ml), fibronectin (10 μg/ml), and BSA (10 μg/ml), the plates are scratched in 4-5 areas and tissue pieces are placed in the scratched areas, then culture medium (DMEM/Ham F-12 with additives) suitable for epithelial cell growth is added and plates are placed in an incubator at 37°C in 5% CO2 humidified air. The culture medium is changed every 3-4 days. The epithelial cells grow from the pieces forming about 1.5 cm diameter rings in 3-4 weeks. Explants can be re-used up to 6 times by moving them into new pre-coated plates. Cells are lifted using trypsin/EDTA, pooled, counted, and re-plated in T75 Cell Bind flasks to increase their numbers. T75 flasks seeded with 2-3 million cells grow to 80% confluence in 4 weeks. Expanded primary human epithelial cells can be cultured and allowed to differentiate on air-liquid interface. Methods described here provide an abundant source of human bronchial epithelial cells from freshly isolated tissues and allow for studying these cells as models of disease and for pharmacology and toxicology screening.Download video file.(144M, mp4) 相似文献
2.
Oeygunn Utheim Rakibul Islam Torstein Lyberg Borghild Roald Jon Roger Eidet Maria Fideliz de la Paz Darlene A. Dartt Sten Raeder Tor Paaske Utheim 《PloS one》2015,10(3)
Aim/Purpose of the Study
To develop a one-week storage method, without serum and xenobiotics, that would maintain cell viability, morphology, and phenotype of cultured human limbal epithelial sheets.Materials and Methods
Human limbal explants were cultured on intact human amniotic membranes for two weeks. The sheets were stored in a hermetically sealed container at 23°C in either a serum-free medium with selected animal serum-derived compounds (Quantum 286) or a xenobiotic-free medium (Minimal Essential Medium) for 4 and 7 days. Stored and non-stored cultures were analyzed for cell viability, amniotic membrane and epithelial sheet thickness, and a panel of immunohistochemical markers for immature cells (ΔNp63α, p63, Bmi-1, C/EBP∂, ABCG2 and K19), differentiated cells (K3 and Cx43), proliferation (PCNA), and apoptosis (Caspase-3).Results
The cell viability of the cultures was 98 ± 1% and remained high after storage. Mean central thickness of non-stored limbal epithelial sheets was 23 ± 3 μm, and no substantial loss of cells was observed after storage. The non-stored epithelial sheets expressed a predominantly immature phenotype with ΔNp63α positivity of more than 3% in 9 of 13 cultures. After storage, the expression of ABCG2 and C/EBP∂ was reduced for the 7 day Quantum 286-storage group; (P = 0.04), and Bmi-1 was reduced after 4 day Quantum 286-storage; (P = 0.02). No other markers varied significantly. The expression of differentiation markers was unrelated to the thickness of the epithelia and amniotic membrane, apart from ABCG2, which correlated negatively with thickness of limbal epithelia (R = -0.69, P = 0.01) and ΔNp63α, which correlated negatively with amniotic membrane thickness (R = -0.59, P = 0.03).Conclusion
Limbal epithelial cells cultured from explants on amniotic membrane can be stored at 23°C in both serum-free and xenobiotic-free media, with sustained cell viability, ultrastructure, and ΔNp63α-positivity after both 4 and 7 days. 相似文献3.
Epithelial ovarian cancer is a leading cause of female cancer mortality in the United States. In contrast to other women-specific cancers, like breast and uterine carcinomas, where death rates have fallen in recent years, ovarian cancer cure rates have remained relatively unchanged over the past two decades 1. This is largely due to the lack of appropriate screening tools for detection of early stage disease where surgery and chemotherapy are most effective 2, 3. As a result, most patients present with advanced stage disease and diffuse abdominal involvement. This is further complicated by the fact that ovarian cancer is a heterogeneous disease with multiple histologic subtypes 4, 5. Serous ovarian carcinoma (SOC) is the most common and aggressive subtype and the form most often associated with mutations in the BRCA genes. Current experimental models in this field involve the use of cancer cell lines and mouse models to better understand the initiating genetic events and pathogenesis of disease 6, 7. Recently, the fallopian tube has emerged as a novel site for the origin of SOC, with the fallopian tube (FT) secretory epithelial cell (FTSEC) as the proposed cell of origin 8, 9. There are currently no cell lines or culture systems available to study the FT epithelium or the FTSEC. Here we describe a novel ex vivo culture system where primary human FT epithelial cells are cultured in a manner that preserves their architecture, polarity, immunophenotype, and response to physiologic and genotoxic stressors. This ex vivo model provides a useful tool for the study of SOC, allowing a better understanding of how tumors can arise from this tissue, and the mechanisms involved in tumor initiation and progression. 相似文献
4.
Yang Lu Yiyi Gong Jie Lian Ling Wang James D. Kretlow Guangdong Zhou Yilin Cao Wei Liu Wen Jie Zhang 《PloS one》2014,9(9)
In vitro expansion of endothelial progenitor cells (EPCs) remains a challenge in stem cell research and its application. We hypothesize that high density culture is able to expand EPCs from bone marrow by mimicking cell-cell interactions of the bone marrow niche. To test the hypothesis, rat bone marrow cells were either cultured in high density (2×105 cells/cm2) by seeding total 9×105 cells into six high density dots or cultured in regular density (1.6×104 cells/cm2) with the same total number of cells. Flow cytometric analyses of the cells cultured for 15 days showed that high density cells exhibited smaller cell size and higher levels of marker expression related to EPCs when compared to regular density cultured cells. Functionally, these cells exhibited strong angiogenic potentials with better tubal formation in vitro and potent rescue of mouse ischemic limbs in vivo with their integration into neo-capillary structure. Global gene chip and ELISA analyses revealed up-regulated gene expression of adhesion molecules and enhanced protein release of pro-angiogenic growth factors in high density cultured cells. In summary, high density cell culture promotes expansion of bone marrow contained EPCs that are able to enhance tissue angiogenesis via paracrine growth factors and direct differentiation into endothelial cells. 相似文献
5.
目的:探索采用无血清培养基原代培养成人宫颈上皮细胞的方法。方法:以成人的宫颈上皮组织为研究对象,采用胰蛋白酶-EDTA消化法获得宫颈上皮细胞悬液,于上皮细胞专用无血清培养基中培养,采用免疫细胞化学法测定细胞中角蛋白及波形蛋白的表达,对细胞纯度进行鉴定。结果:原代培养10-15天细胞融合达60%,传代至4-6代,细胞出现生长衰退。早期细胞生长状态良好,细胞纯度在90%以上。结论:采用酶消化法及K-SFM无血清培养基培养可获得纯度高的成人宫颈上皮细胞。 相似文献
6.
目的 :建立一种简便、有效的脐血造血干 /祖细胞体外大量扩增培养体系。方法 :淋巴细胞分离液分离的脐血单个核细胞在SCF ,IL - 3,IL - 6三种细胞因子的作用下 ,于悬浮搅拌培养体系中培养 ,分析其总细胞数、CFU -GM、CD34+ 细胞的扩增倍数。结果 :脐血单个核细胞在悬浮搅拌培养体系中培养 12天后 ,其总细胞数、CFU -GM、CD34+ 细胞的扩增倍数分别为 6 .31± 1.5 2 ,2 0 .6 3± 1.5 4和 7.11± 1.12。结论 :悬浮搅拌培养体系是脐血造血干 /祖细胞体外大量扩增的有效培养体系。 相似文献
7.
8.
Koizumi J Kojima T Kamekura R Kurose M Harimaya A Murata M Osanai M Chiba H Himi T Sawada N 《The Journal of membrane biology》2007,218(1-3):1-7
The epithelium of upper respiratory tissues such as nasal mucosa forms a continuous barrier to a wide variety of exogenous
antigens. The epithelial barrier function is regulated in large part by the intercellular junctions, referred to as gap and
tight junctions. However, changes of gap and tight junctions during differentiation of human nasal epithelial (HNE) cells
are still unclear. In the present study, to investigate changes of gap and tight junctions during differentiation of HNE cells
in vitro, we used primary human HNE cells cocultured with primary human nasal fibroblast (HNF) cells in a noncontact system. In HNE
cells cocultured with HNF cells for 2 weeks, numerous elongated cilia-like structures were observed compared to those without
HNF cells. In the coculture, downregulation of Cx26 and upregulation of Cx30.3 and Cx31 were observed together with extensive
gap junctional intercellular communication. Furthermore, expression of the tight junction proteins claudin-1, claudin-4, occludin
and ZO-2 was increased. These results suggest that switching in expression of connexins and induction of tight junction proteins
may be closely associated with differentiation of HNE cells in
vitro and that differentiation of HNE cells requires unknown soluble factors secreted from HNF cells. 相似文献
9.
Limbal epithelial stem cells may ameliorate limbal stem cell deficiency through secretion of therapeutic proteins, delivered to the cornea in a controlled manner using hydrogels. In the present study the secretome of alginate-encapsulated limbal epithelial stem cells is investigated. Conditioned medium was generated from limbal epithelial stem cells encapsulated in 1.2% (w/v) calcium alginate gels. Conditioned medium proteins separated by 1-D gel electrophoresis were visualized by silver staining. Proteins of interest including secreted protein acidic and rich in cysteine, profilin-1, and galectin-1 were identified by immunoblotting. The effect of conditioned medium (from alginate-encapsulated limbal epithelial stem cells) on corneal epithelial cell proliferation was quantified and shown to significantly inhibit (P≤0.05) their growth. As secreted protein acidic and rich in cysteine was previously reported to attenuate proliferation of epithelial cells, this protein may be responsible, at least in part, for inhibition of corneal epithelial cell proliferation. We conclude that limbal epithelial stem cells encapsulated in alginate gels may regulate corneal epithelialisation through secretion of inhibitory proteins. 相似文献
10.
11.
C.A. Conover L.C. Hartmann S. Bradley P. Stalboerger G.G. Klee K.R. Kalli R.B. Jenkins 《Experimental cell research》1998,238(2):439
Little is known about the factors regulating epithelial ovarian cancer cell growth. This is due, in large part, to the difficulty in obtaining and culturing human ovarian cells for relevantin vitrostudies. We recently developed a method for culturing epithelial carcinoma cells derived from fresh, untreated epithelial ovarian cancer specimens. The cell populations are free of fibroblasts and reflect the primary tumor as determined by chromosomal analysis. In this study we report on the cells’ growth in serum-free medium and their secretion of CA-125, a glycoprotein marker for ovarian cancer. Furthermore we characterize the insulin-like growth factor (IGF) system in these primary ovarian carcinoma cell cultures. The cells secrete IGF peptides and IGF-binding proteins, possess specific type I IGF receptors, and respond to exogenous IGFs. The culture system reported here provides the basis for further study and manipulation of the IGF system as well as other regulators of epithelial ovarian cancer. Greater understanding of the cellular and molecular mediators of primary human ovarian cancer cell growth may translate into relevant clinical interventions. 相似文献
12.
This paper introduces a novel recovery strategy for endothelial colony forming progenitor cells (ECFCs) from heparinized but otherwise unmanipulated adult human peripheral blood within a mean of 12 days. After large scale expansion >1x108 ECFCs can be obtained for further tests. Advantageously by using pHPL the contact of human cells with bovine serum antigens can be excluded. By flow cytometry and immunohistochemistry the isolated cells can be characterized as ECFC and their in vitro functionality to form vascular like structures can be tested in a matrigel assay. Further these cells can be subcutaneously injected in a mouse model to form functional, perfused vessels in vivo. After long term expansion and cryopreservation proliferation, function and genomic stability appear to be preserved. 3,4This animal-protein free isolation and expansion method is easily applicable to generate a large quantity of ECFCs. Download video file.(144M, mp4) 相似文献
13.
Ryuhei Hayashi Yuki Ishikawa Miyuki Ito Tomofumi Kageyama Kuniko Takashiba Tsuyoshi Fujioka Motokazu Tsujikawa Hiroyuki Miyoshi Masayuki Yamato Yukio Nakamura Kohji Nishida 《PloS one》2012,7(9)
Induced pluripotent stem (iPS) cells can be established from somatic cells. However, there is currently no established strategy to generate corneal epithelial cells from iPS cells. In this study, we investigated whether corneal epithelial cells could be differentiated from iPS cells. We tested 2 distinct sources: human adult dermal fibroblast (HDF)-derived iPS cells (253G1) and human adult corneal limbal epithelial cells (HLEC)-derived iPS cells (L1B41). We first established iPS cells from HLEC by introducing the Yamanaka 4 factors. Corneal epithelial cells were successfully induced from the iPS cells by the stromal cell-derived inducing activity (SDIA) differentiation method, as Pax6+/K12+ corneal epithelial colonies were observed after prolonged differentiation culture (12 weeks or later) in both the L1B41 and 253G1 iPS cells following retinal pigment epithelial and lens cell induction. Interestingly, the corneal epithelial differentiation efficiency was higher in L1B41 than in 253G1. DNA methylation analysis revealed that a small proportion of differentially methylated regions still existed between L1B41 and 253G1 iPS cells even though no significant difference in methylation status was detected in the specific corneal epithelium-related genes such as K12, K3, and Pax6. The present study is the first to demonstrate a strategy for corneal epithelial cell differentiation from human iPS cells, and further suggests that the epigenomic status is associated with the propensity of iPS cells to differentiate into corneal epithelial cells. 相似文献
14.
15.
Corneal epithelium maintains visual acuity and is regenerated by the proliferation and differentiation of limbal progenitor cells. Transplantation of human limbal progenitor cells could restore the integrity and functionality of the corneal surface in patients with limbal stem cell deficiency. However, multiple protocols are employed to differentiate human induced pluripotent stem (iPS) cells into corneal epithelium or limbal progenitor cells. The aim of this study was to optimize a protocol that uses bone morphogenetic protein 4 (BMP4) and limbal cell-specific medium. Human dermal fibroblast-derived iPS cells were differentiated into limbal progenitor cells using limbal cell-specific (PI) medium and varying doses (1, 10, and 50 ng/mL) and durations (1, 3, and 10 days) of BMP4 treatment. Differentiated human iPS cells were analyzed by real-time polymerase chain reaction (RT-PCR), Western blotting, and immunocytochemical studies at 2 or 4 weeks after BMP4 treatment. Culturing human dermal fibroblast-derived iPS cells in limbal cell-specific medium and BMP4 gave rise to limbal progenitor and corneal epithelial-like cells. The optimal protocol of 10 ng/mL and three days of BMP4 treatment elicited significantly higher limbal progenitor marker (ABCG2, ∆Np63α) expression and less corneal epithelial cell marker (CK3, CK12) expression than the other combinations of BMP4 dose and duration. In conclusion, this study identified a successful reprogramming strategy to induce limbal progenitor cells from human iPS cells using limbal cell-specific medium and BMP4. Additionally, our experiments indicate that the optimal BMP4 dose and duration favor limbal progenitor cell differentiation over corneal epithelial cells and maintain the phenotype of limbal stem cells. These findings contribute to the development of therapies for limbal stem cell deficiency disorders. 相似文献
16.
Gonçalves R da Silva CL Ferreira BS Lemos MA Lemos F Almeida-Porada G Cabral JM 《Biotechnology letters》2006,28(5):335-340
The total cell expansion of human umbilical cord blood (CB) and adult bone marrow (BM) CD34+-enriched cells cultured in supplemented serum-free media, either over irradiated human feeder layers or in stroma-free systems, were characterized by a simple kinetic model using only two parameters: the specific cell expansion rate, mu, and the death rate constant, k(k). Both CB and BM cells can expand at approximately the same rate (0.21 day(-1)) in this culture system however, cell death depends on the presence of stroma and the environment in which the cells are cultured. 相似文献
17.
18.
Branislava Janic Austin M. Guo A. S. M. Iskander Nadimpalli Ravi S. Varma Alfonso G. Scicli Ali S. Arbab 《PloS one》2010,5(2)
Background
Stem cells/progenitors are central to the development of cell therapy approaches for vascular ischemic diseases. The crucial step in rescuing tissues from ischemia is improvement of vascularization that can be achieved by promoting neovascularization. Endothelial progenitor cells (EPCs) are the best candidates for developing such an approach due to their ability to self-renew, circulate and differentiate into mature endothelial cells (ECs). Studies showed that intravenously administered progenitors isolated from bone marrow, peripheral or cord blood home to ischemic sites. However, the successful clinical application of such transplantation therapy is limited by low quantities of EPCs that can be generated from patients. Hence, the ability to amplify the numbers of autologous EPCs by long term in vitro expansion while preserving their angiogenic potential is critically important for developing EPC based therapies. Therefore, the objective of this study was to evaluate the capacity of cord blood (CB)-derived AC133+ cells to differentiate, in vitro, towards functional, mature endothelial cells (ECs) after long term in vitro expansion.Methodology
We systematically characterized the properties of CB AC133+ cells over the 30 days of in vitro expansion. During 30 days of culturing, CB AC133+ cells exhibited significant growth potential that was manifested as 148-fold increase in cell numbers. Flow cytometry and immunocytochemistry demonstrated that CB AC133+ cells'' expression of endothelial progenitor markers was not affected by long term in vitro culturing. After culturing under EC differentiation conditions, cells exhibited high expression of mature ECs markers, such as CD31, VEGFR-2 and von Willebrand factor, as well as the morphological changes indicative of differentiation towards mature ECs. In addition, throughout the 30 day culture cells preserved their functional capacity that was demonstrated by high uptake of DiI fluorescently conjugated-acetylated-low density lipoprotein (DiI-Ac-LDL), in vitro and in vivo migration towards chemotactic stimuli and in vitro tube formation.Conclusions
These studies demonstrate that primary CB AC133+ culture contained mainly EPCs and that long term in vitro conditions facilitated the maintenance of these cells in the state of commitment towards endothelial lineage. 相似文献19.
E-cigarettes are widely believed to be safer than conventional cigarettes and have been even suggested as aids for smoking cessation. However, while reasonable with some regards, this judgment is not yet supported by adequate biomedical research data. Since bronchial epithelial cells are the immediate target of inhaled toxicants, we hypothesized that exposure to e-cigarettes may affect the metabolome of human bronchial epithelial cells (HBEC) and that the changes are, at least in part, induced by oxidant-driven mechanisms. Therefore, we evaluated the effect of e-cigarette liquid (ECL) on the metabolome of HBEC and examined the potency of antioxidants to protect the cells. We assessed the changes of the intracellular metabolome upon treatment with ECL in comparison of the effect of cigarette smoke condensate (CSC) with mass spectrometry and principal component analysis on air-liquid interface model of normal HBEC. Thereafter, we evaluated the capability of the novel antioxidant tetrapeptide O-methyl-l-tyrosinyl-γ-l-glutamyl-l-cysteinylglycine (UPF1) to attenuate the effect of ECL. ECL caused a significant shift in the metabolome that gradually gained its maximum by the 5th hour and receded by the 7th hour. A second alteration followed at the 13th hour. Treatment with CSC caused a significant initial shift already by the 1st hour. ECL, but not CSC, significantly increased the concentrations of arginine, histidine, and xanthine. ECL, in parallel with CSC, increased the content of adenosine diphosphate and decreased that of three lipid species from the phosphatidylcholine family. UPF1 partially counteracted the ECL-induced deviations, UPF1’s maximum effect occurred at the 5th hour. The data support our hypothesis that ECL profoundly alters the metabolome of HBEC in a manner, which is comparable and partially overlapping with the effect of CSC. Hence, our results do not support the concept of harmlessness of e-cigarettes. 相似文献
20.
Marc A. Dziasko Hannah E. Armer Hannah J. Levis Alex J. Shortt Stephen Tuft Julie T. Daniels 《PloS one》2014,9(4)
Limbal epithelial stem cells (LESCs) are essential to maintain the transparent ocular surface required for vision. Despite great advances in our understanding of ocular stem cell biology over the last decade, the exact location of the LESC niche remains unclear. In the present study we have used in vitro clonal analysis to confirm that limbal crypts provide a niche for the resident LESCs. We have used high-resolution imaging of the basal epithelial layer at the limbus to identify cells with a morphology consistent with stem cells that were only present within the basal layer of the limbal crypts. These cells are proximal to limbal stromal cells suggesting direct cell-to-cell interaction. Serial block-face scanning electron microscopy (SBFSEM) confirmed that the putative LESCs are indeed in direct contact with cells in the underlying stroma, a contact that is facilitated by focal basement membrane interruptions. Limbal mesenchymal cells previously identified in the human limbus collocate in the crypt-rich limbal stromal area in the vicinity of LESCs and may be involved in the cell-to-cell contact revealed by SBFSEM. We also observed a high population of melanocytes within the basal layer of the limbal crypts. From these observations we present a three dimensional reconstruction of the LESC niche in which the stem cell is closely associated and maintained by both dendritic pigmented limbal melanocytes and elongated limbal stromal cells. 相似文献