共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent progress in understanding the origins of plastids from endosymbiotic cyanobacteria is reviewed. Establishing when during geological time the endosymbiosis occurred remains elusive, but progress has been made in defining the cyanobacterial lineage most closely related to plastids, and some mechanistic insight into the possible existence of cryptic endosymbioses perhaps involving Chlamydia-like infections of the host have also been presented. The phylogenetic affinities of the host remain obscure. The existence of a second lineage of primary plastids in euglyphid amoebae has now been confirmed, but the quasipermanent acquisition of plastids by animals has been shown to be more ephemeral than initially suspected. A new understanding of how plastids have been integrated into their hosts by transfer of photosynthate, by endosymbiotic gene transfer and repatriation of gene products back to the endosymbiont, and by regulation of endosymbiont division is presented in context.Photosynthesis is biology’s equivalent of alchemy converting a common substance (CO2) into a precious one (reduced carbon compounds rich in chemical energy). Freely available light energy is initially converted to precious chemical energy in the form of ATP. This energy, and the reducing power generated by splitting water molecules to release electrons, is used to fix carbon from atmospheric CO2 and generate reduced carbon compounds that underpin the biosphere. It is estimated that plants and algae convert 258 billion tons of carbon dioxide into biomass by photosynthesis annually (Geider et al. 2001). Microfossils in ancient stromatolites indicate that cyanobacterium-like organisms had invented this process—or an early, perhaps nonoxygenic, version of it—at least 3.5 byo (billions of years old) (Lowe 1980; Walter et al. 1980; Schopf 1993). These photosynthetic prokaryotes substantially predate eukaryotes, which emerged much later (Rasmussen et al. 2008; Koonin 2010). The common ancestor of all eukaryotes entered into an endosymbiotic partnership with an α-proteobacterium that evolved into the mitochondrion, now the site of aerobic respiration in most eukaryotes (Gray 2012); animals and fungi are heterotrophic descendants of this partnership. Another lineage, which eventually produced the plants, entered into a second endosymbiotic partnership, this time with a cyanobacterium, which transplanted photosynthetic alchemy into eukaryotes to create plastids (Gray and Archibald 2012). This review will highlight recent progress in our understanding of the origin and evolution of plastids. 相似文献
2.
后生动物线粒体基因组:起源、大小和基因排列进化 总被引:1,自引:0,他引:1
由于受到强烈的进化约束,后生动物线粒体基因组在大小和基因含量上一直保持稳定,相比之下核基因组则发生了巨大的改变。后生动物线粒体基因组结构的可塑性在一定程度上归功于可能由tRNA基因介导的基因重排事件,虽然亲缘关系密切的物种间也可能出现基因重排,但同门内的线粒体基因组仍趋向于具有类似的结构特征。我们对后生动物线粒体基因组的起源、大小和基因排列进化方面的特点进行了介绍。 相似文献
3.
One of the most important omissions in recent evolutionary theory concerns how eukaryotes could emerge and evolve. According
to the currently accepted views, the first eukaryotic cell possessed a nucleus, an endomembrane system, and a cytoskeleton
but had an inefficient prokaryotic-like metabolism. In contrast, one of the most ancient eukaryotes, the metamonada Giardia lamblia, was found to have formerly possessed mitochondria. In sharp contrast with the traditional views, this paper suggests, based
on the energetic aspect of genome organization, that the emergence of eukaryotes was promoted by the establishment of an efficient
energy-converting organelle, such as the mitochondrion. Mitochondria were acquired by the endosymbiosis of ancient α-purple
photosynthetic Gram-negative eubacteria that reorganized the prokaryotic metabolism of the archaebacterial-like ancestral
host cells. The presence of an ATP pool in the cytoplasm provided by this cell organelle allowed a major increase in genome
size. This evolutionary change, the remarkable increase both in genome size and complexity, explains the origin of the eukaryotic
cell itself.
The loss of cell wall and the appearance of multicellularity can also be explained by the acquisition of mitochondria. All
bacteria use chemiosmotic mechanisms to harness energy; therefore the periplasm bounded by the cell wall is an essential part
of prokaryotic cells. Following the establishment of mitochondria, the original plasma membrane-bound metabolism of prokaryotes,
as well as the funcion of the periplasm providing a compartment for the formation of different ion gradients, has been transferred
into the inner mitochondrial membrane and intermembrane space. After the loss of the essential function of periplasm, the
bacterial cell wall could also be lost, which enabled the naked cells to establish direct connections among themselves. The
relatively late emergence of mitochondria may be the reason why multicellularity evolved so slowly.
Received: 29 May 1997 / Accepted: 9 October 1997 相似文献
4.
The endosymbiotic theory for the origin of mitochondria requires substantial modification. The three identifiable ancestral sources to the proteome of mitochondria are proteins descended from the ancestral α-proteobacteria symbiont, proteins with no homology to bacterial orthologs, and diverse proteins with bacterial affinities not derived from α-proteobacteria. Random mutations in the form of deletions large and small seem to have eliminated nonessential genes from the endosymbiont-mitochondrial genome lineages. This process, together with the transfer of genes from the endosymbiont-mitochondrial genome to nuclei, has led to a marked reduction in the size of mitochondrial genomes. All proteins of bacterial descent that are encoded by nuclear genes were probably transferred by the same mechanism, involving the disintegration of mitochondria or bacteria by the intracellular membranous vacuoles of cells to release nucleic acid fragments that transform the nuclear genome. This ongoing process has intermittently introduced bacterial genes to nuclear genomes. The genomes of the last common ancestor of all organisms, in particular of mitochondria, encoded cytochrome oxidase homologues. There are no phylogenetic indications either in the mitochondrial proteome or in the nuclear genomes that the initial or subsequent function of the ancestor to the mitochondria was anaerobic. In contrast, there are indications that relatively advanced eukaryotes adapted to anaerobiosis by dismantling their mitochondria and refitting them as hydrogenosomes. Accordingly, a continuous history of aerobic respiration seems to have been the fate of most mitochondrial lineages. The initial phases of this history may have involved aerobic respiration by the symbiont functioning as a scavenger of toxic oxygen. The transition to mitochondria capable of active ATP export to the host cell seems to have required recruitment of eukaryotic ATP transport proteins from the nucleus. The identity of the ancestral host of the α-proteobacterial endosymbiont is unclear, but there is no indication that it was an autotroph. There are no indications of a specific α-proteobacterial origin to genes for glycolysis. In the absence of data to the contrary, it is assumed that the ancestral host cell was a heterotroph. 相似文献
5.
叶绿体的"内共生"与"基因转移"现象 总被引:1,自引:0,他引:1
叶绿体是绿色植物的重要细胞器,被认为由“古老的”蓝细菌与“古老的真核细胞”经过内共生进化而来。对叶绿体进化过程中出现的二次内共生、退化隐缩、基因转移等现象进行了介绍,同时讨论了叶绿体保留部分基因组的意义. 相似文献
6.
Shengxin Chang Jianmei Chen Yankun Wang Bingchao Gu Jianbo He Pu Chu Rongzhan Guan 《遗传学报》2013,40(3):117-126
To explore the mitochondrial genes of the Cruciferae family, the mitochondrial genome of Raphanus sativus (sat) was sequenced and annotated. The circular mitochondrial genome of sat is 239,723 bp and includes 33 protein-coding genes, three rRNA genes and 17 tRNA genes. The mitochondrial genome also contains a pair of large repeat sequences 5.9 kb in length, which may mediate genome reorga-nization into two sub-genomic circles, with predicted sizes of 124.8 kb and 115.0 kb, respectively. Furthermore, gene evolution of mitochondrial genomes within the Cruciferae family was analyzed using sat mitochondrial type (mitotype), together with six other re-ported mitotypes. The cruciferous mitochondrial genomes have maintained almost the same set of functional genes. Compared with Cycas taitungensis (a representative gymnosperm), the mitochondrial genomes of the Cruciferae have lost nine protein-coding genes and seven mitochondrial-like tRNA genes, but acquired six chloroplast-like tRNAs. Among the Cruciferae, to maintain the same set of genes that are necessary for mitochondrial function, the exons of the genes have changed at the lowest rates, as indicated by the numbers of single nucleotide polymorphisms. The open reading frames (ORFs) of unknown function in the cruciferous genomes are not conserved. Evolutionary events, such as mutations, genome reorganizations and sequence insertions or deletions (indels), have resulted in the non- conserved ORFs in the cruciferous mitochondrial genomes, which is becoming significantly different among mitotypes. This work represents the first phylogenic explanation of the evolution of genes of known function in the Cruciferae family. It revealed significant variation in ORFs and the causes of such variation. 相似文献
7.
Martínez-Giménez Juan A. Tabares-Seisdedos Rafael 《Origins of life and evolution of the biosphere》2021,51(2):167-183
Origins of Life and Evolution of Biospheres - The origin of genetic systems is the central problem in the study of the origin of life for which various explanatory hypotheses have been presented.... 相似文献
8.
Francesco Frati Chris Simon Jack Sullivan David L. Swofford 《Journal of molecular evolution》1997,44(2):145-158
The sequence of the mitochondrial COII gene has been widely used to estimate phylogenetic relationships at different taxomonic
levels across insects. We investigated the molecular evolution of the COII gene and its usefulness for reconstructing phylogenetic
relationships within and among four collembolan families. The collembolan COII gene showed the lowest A + T content of all
insects so far examined, confirming that the well-known A + T bias in insect mitochondrial genes tends to increase from the
basal to apical orders. Fifty-seven percent of all nucleotide positions were variable and most of the third codon positions
appeared free to vary. Values of genetic distance between congeneric species and between families were remarkably high; in
some cases the latter were higher than divergence values between other orders of insects. The remarkably high divergence levels
observed here provide evidence that collembolan taxa are quite old; divergence levels among collembolan families equaled or
exceeded divergences among pterygote insect orders. Once the saturated third-codon positions (which violated stationarity
of base frequencies) were removed, the COII sequences contained phylogenetic information, but the extent of that information
was overestimated by parsimony methods relative to likelihood methods. In the phylogenetic analysis, consistent statistical
support was obtained for the monophyly of all four genera examined, but relationships among genera/families were not well
supported. Within the genus Orchesella, relationships were well resolved and agreed with allozyme data. Within the genus Isotomurus, although three pairs of populations were consistently identified, these appeared to have arisen in a burst of evolution from
an earlier ancestor. Isotomurus italicus always appeared as basal and I. palustris appeared to harbor a cryptic species, corroborating allozyme data.
Received: 12 January 1996 / Accepted: 10 August 1996 相似文献
9.
Miklós Müller Marek Mentel Jaap J. van Hellemond Katrin Henze Christian Woehle Sven B. Gould Re-Young Yu Mark van der Giezen Aloysius G. M. Tielens William F. Martin 《Microbiology and molecular biology reviews》2012,76(2):444-495
Summary: Major insights into the phylogenetic distribution, biochemistry, and evolutionary significance of organelles involved in ATP synthesis (energy metabolism) in eukaryotes that thrive in anaerobic environments for all or part of their life cycles have accrued in recent years. All known eukaryotic groups possess an organelle of mitochondrial origin, mapping the origin of mitochondria to the eukaryotic common ancestor, and genome sequence data are rapidly accumulating for eukaryotes that possess anaerobic mitochondria, hydrogenosomes, or mitosomes. Here we review the available biochemical data on the enzymes and pathways that eukaryotes use in anaerobic energy metabolism and summarize the metabolic end products that they generate in their anaerobic habitats, focusing on the biochemical roles that their mitochondria play in anaerobic ATP synthesis. We present metabolic maps of compartmentalized energy metabolism for 16 well-studied species. There are currently no enzymes of core anaerobic energy metabolism that are specific to any of the six eukaryotic supergroup lineages; genes present in one supergroup are also found in at least one other supergroup. The gene distribution across lineages thus reflects the presence of anaerobic energy metabolism in the eukaryote common ancestor and differential loss during the specialization of some lineages to oxic niches, just as oxphos capabilities have been differentially lost in specialization to anoxic niches and the parasitic life-style. Some facultative anaerobes have retained both aerobic and anaerobic pathways. Diversified eukaryotic lineages have retained the same enzymes of anaerobic ATP synthesis, in line with geochemical data indicating low environmental oxygen levels while eukaryotes arose and diversified. 相似文献
10.
Nicolas Glansdorff 《Journal of molecular evolution》1999,49(4):432-438
We present a hypothesis suggesting that close linkage of functionally related anabolic genes and their ultimate integration into operons developed under selective pressure as a molecular strategy which contributed to the viability of ancestral thermophilic cells. Cotranslation of functionally related proteins is viewed as having facilitated the formation of multienzyme complexes channeling thermolabile substrates and the mutual stabilization of inherently thermolabile proteins. In this perspective, the evolutionary scheme considered the most probable is the evolution of both Bacteria and Archaea by thermoreduction (Forterre 1995) from a mesophilic, protoeukaryotic last common ancestor (LCA) endowed with appreciable genetic redundancy. 相似文献
11.
Primary Events, Energy Transfer, and Reactions in Photosynthetic Units: Quantum Accumulation in Photosynthetic Oxygen Evolution 总被引:1,自引:0,他引:1
Three independent methods have been used to determine the size of the quantum accumulation unit in green plant photosynthesis. This unit is defined as that group of pigment molecules within which quantal absorption acts must take place leading to the evolution of a single O2 molecule. All three methods take advantage of the nonlinearity of oxygen yield with light dose at very low dosages. The experimental values of this unit size, based on an assumed model for the charge cooperation in O2 evolution, ranging from 800 to 1600, suggest that there is either limited energy transfer between energy-trapping units or chemical cooperation among oxygen precursors formed in several neighboring energy-trapping units. Widely diffusible essential precursors to molecular oxygen are ruled out by these results. Inhibition studies show that O2 evolution is blocked when 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) is added to chloroplasts after two preliminary flashes and before a third flash which would have yielded O2 in the absence of DCMU. This experiment is interpreted as evidence that the site of DCMU inhibition is on the oxidizing side of system II. Pretreatment of chloroplasts with large concentrations of Tris, previously believed to destroy O2 evolution by blocking an essential reaction in the electron chain between water and system II, may be alternately interpreted as promoting the dark reversal of the system II light-induced electron transfer. 相似文献
12.
13.
The hypothesis of bacterial origin of mitochondria, which existed until the end of the 20th century, has been confirmed on the basis of the current concepts of organic world evolution in the open sea hydrosphere and original data on the entry of bacteria (prokaryotes) in the cells of eukaryotes and their transformation into the mitochondrial mechanism of aerobic energy metabolism. This hypothesis can now be considered as a factually substantiated theory. The process of endocytosis of bacteria in the tissues of eukaryotes, which began at the onset of transition of the anaerobic state of open sea hydrosphere and land atmosphere (Early Proterozoic), is considered as the beginning of symbiotic mode of life of organisms of the Proterozoic and Postproterozoic organic world. 相似文献
14.
Widespread Occurrence and Lateral Transfer of the Cyanobactin Biosynthesis Gene Cluster in Cyanobacteria
下载免费PDF全文

Cyanobactins are small cyclic peptides produced by cyanobacteria. Here we demonstrate the widespread but sporadic occurrence of the cyanobactin biosynthetic pathway. We detected a cyanobactin biosynthetic gene in 48 of the 132 strains included in this study. Our results suggest that cyanobactin biosynthetic genes have a complex evolutionary history in cyanobacteria punctuated by a series of ancient horizontal gene transfer events. 相似文献
15.
Mg+2/Mn+2-dependent type 2C protein phosphatases (PP2Cs) are ubiquitous in eukaryotes, mediating diverse cellular signaling processes through metal ion catalyzed dephosphorylation of target proteins. We have identified a distinct PP2C sequence class (“PP2C7s”) which is nearly universally distributed in Eukaryotes, and therefore apparently ancient. PP2C7s are by far most prominent and diverse in plants and green algae. Combining phylogenetic analysis, subcellular localization predictions, and a distillation of publically available gene expression data, we have traced the evolutionary trajectory of this gene family in photosynthetic eukaryotes, demonstrating two major sequence assemblages featuring a succession of increasingly derived sub-clades. These display predominant expression moving from an ancestral pattern in photosynthetic tissues toward non-photosynthetic, specialized and reproductive structures. Gene co-expression network composition strongly suggests a shifting pattern of PP2C7 gene functions, including possible regulation of starch metabolism for one homologue set in Arabidopsis and rice. Distinct plant PP2C7 sub-clades demonstrate novel amino terminal protein sequences upon motif analysis, consistent with a shifting pattern of regulation of protein function. More broadly, neither the major events in PP2C sequence evolution, nor the origin of the diversity of metal binding characteristics currently observed in different PP2C lineages, are clearly understood. Identification of the PP2C7 sequence clade has allowed us to provide a better understanding of both of these issues. Phylogenetic analysis and sequence comparisons using Hidden Markov Models strongly suggest that PP2Cs originated in Bacteria (Group II PP2C sequences), entered Eukaryotes through the ancestral mitochondrial endosymbiosis, elaborated in Eukaryotes, then re-entered Bacteria through an inter-domain gene transfer, ultimately producing bacterial Group I PP2C sequences. A key evolutionary event, occurring first in ancient Eukaryotes, was the acquisition of a conserved aspartate in classic Motif 5. This has been inherited subsequently by PP2C7s, eukaryotic PP2Cs and bacterial Group I PP2Cs, where it is crucial to the formation of a third metal binding pocket, and catalysis. 相似文献
16.
Background
The replication of DNA in Archaea and eukaryotes requires several ancillary complexes, including proliferating cell nuclear antigen (PCNA), replication factor C (RFC), and the minichromosome maintenance (MCM) complex. Bacterial DNA replication utilizes comparable proteins, but these are distantly related phylogenetically to their archaeal and eukaryotic counterparts at best.Methodology/Principal Findings
While the structures of each of the complexes do not differ significantly between the archaeal and eukaryotic versions thereof, the evolutionary dynamic in the two cases does. The number of subunits in each complex is constant across all taxa. However, they vary subtly with regard to composition. In some taxa the subunits are all identical in sequence, while in others some are homologous rather than identical. In the case of eukaryotes, there is no phylogenetic variation in the makeup of each complex—all appear to derive from a common eukaryotic ancestor. This is not the case in Archaea, where the relationship between the subunits within each complex varies taxon-to-taxon. We have performed a detailed phylogenetic analysis of these relationships in order to better understand the gene duplications and divergences that gave rise to the homologous subunits in Archaea.Conclusion/Significance
This domain level difference in evolution suggests that different forces have driven the evolution of DNA replication proteins in each of these two domains. In addition, the phylogenies of all three gene families support the distinctiveness of the proposed archaeal phylum Thaumarchaeota. 相似文献17.
Origin and Evolution of a New Gene Descended from Alcohol Dehydrogenase in Drosophila 总被引:2,自引:1,他引:2
下载免费PDF全文

D. J. Begun 《Genetics》1997,145(2):375-382
Drosophila alcohol dehydrogenase (Adh) is highly conserved in size, organization, and amino acid sequence. Adh-ψ was hypothesized to be a pseudogene derived from an Adh duplication in the repleta group of Drosophila; however, several results from molecular analyses of this gene conflict with currently held notions of molecular evolution. Perhaps the most difficult observations to reconcile with the pseudogene hypothesis are that the hypothetical replacement sites of Adh-ψ evolve only slightly more quickly than replacement sites of closely related, functional Adh genes, and that the replacement sites of the pseudogenes evolve considerably more slowly than neighboring silent sites. The data have been presented as a paradox that challenges our understanding of the mechanisms underlying DNA sequence divergence. Here I show that Adh-ψ is actually a new, functional gene recently descended from an Adh duplication. This descendant recruited ~60 new N-terminal amino acids, is considerably more basic than ADH, and is evolving at a faster rate than Adh. Furthermore, though the descendant is clearly functional, as inferred from molecular evolution and population genetic data, it retains no obvious ADH activity. This probably reflects functional divergence from its Adh ancestor. 相似文献
18.
19.
20.
A hypothesis is put forward that the variability of translation machinery is one of the key factors of evolutionary transformations of genetic material. It considers the module principle of the evolution theory based on the concepts of duplication and divergence of genetic material, which is required for origination of new genes and proteins with new functions. The duplication results in the appearance of pseudogenes, functionally inactive, but serving a material for creating new functions. The possible mechanisms changing the translation machinery have been considered, which may lead to sporadic pseudogene activation supplying natural selection with mutational changes accumulated by pseudogenes to assess their adaptive value. This takes into account not only potential possibilities of mutational variability of the translation machinery, but also the possibility of protein prionization: also considered is a prion mechanism of inheritance, which is intensely studied nowadays. 相似文献