首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hendra virus causes sporadic fatal disease in horses and humans in eastern Australia. Pteropid bats (flying-foxes) are the natural host of the virus. The mode of flying-fox to horse transmission remains unclear, but oro-nasal contact with flying-fox urine, faeces or saliva is the most plausible. We used GPS data logger technology to explore the landscape utilisation of black flying-foxes and horses to gain new insight into equine exposure risk. Flying-fox foraging was repetitious, with individuals returning night after night to the same location. There was a preference for fragmented arboreal landscape and non-native plant species, resulting in increased flying-fox activity around rural infrastructure. Our preliminary equine data logger study identified significant variation between diurnal and nocturnal grazing behaviour that, combined with the observed flying-fox foraging behaviour, could contribute to Hendra virus exposure risk. While we found no significant risk-exposing difference in individual horse movement behaviour in this study, the prospect warrants further investigation, as does the broader role of animal behaviour and landscape utilisation on the transmission dynamics of Hendra virus.  相似文献   

2.
Bats of the genus Pteropus (flying-foxes) are the natural host of Hendra virus (HeV) which periodically causes fatal disease in horses and humans in Australia. The increased urban presence of flying-foxes often provokes negative community sentiments because of reduced social amenity and concerns of HeV exposure risk, and has resulted in calls for the dispersal of urban flying-fox roosts. However, it has been hypothesised that disturbance of urban roosts may result in a stress-mediated increase in HeV infection in flying-foxes, and an increased spillover risk. We sought to examine the impact of roost modification and dispersal on HeV infection dynamics and cortisol concentration dynamics in flying-foxes. The data were analysed in generalised linear mixed models using restricted maximum likelihood (REML). The difference in mean HeV prevalence in samples collected before (4.9%), during (4.7%) and after (3.4%) roost disturbance was small and non-significant (P = 0.440). Similarly, the difference in mean urine specific gravity-corrected urinary cortisol concentrations was small and non-significant (before = 22.71 ng/mL, during = 27.17, after = 18.39) (P= 0.550). We did find an underlying association between cortisol concentration and season, and cortisol concentration and region, suggesting that other (plausibly biological or environmental) variables play a role in cortisol concentration dynamics. The effect of roost disturbance on cortisol concentration approached statistical significance for region, suggesting that the relationship is not fixed, and plausibly reflecting the nature and timing of disturbance. We also found a small positive statistical association between HeV excretion status and urinary cortisol concentration. Finally, we found that the level of flying-fox distress associated with roost disturbance reflected the nature and timing of the activity, highlighting the need for a ‘best practice’ approach to dispersal or roost modification activities. The findings usefully inform public discussion and policy development in relation to Hendra virus and flying-fox management.  相似文献   

3.
Hendra virus (HeV) causes highly lethal disease in horses and humans in the eastern Australian states of Queensland (QLD) and New South Wales (NSW), with multiple equine cases now reported on an annual basis. Infection and excretion dynamics in pteropid bats (flying-foxes), the recognised natural reservoir, are incompletely understood. We sought to identify key spatial and temporal factors associated with excretion in flying-foxes over a 2300 km latitudinal gradient from northern QLD to southern NSW which encompassed all known equine case locations. The aim was to strengthen knowledge of Hendra virus ecology in flying-foxes to improve spillover risk prediction and exposure risk mitigation strategies, and thus better protect horses and humans. Monthly pooled urine samples were collected from under roosting flying-foxes over a three-year period and screened for HeV RNA by quantitative RT-PCR. A generalised linear model was employed to investigate spatiotemporal associations with HeV detection in 13,968 samples from 27 roosts. There was a non-linear relationship between mean HeV excretion prevalence and five latitudinal regions, with excretion moderate in northern and central QLD, highest in southern QLD/northern NSW, moderate in central NSW, and negligible in southern NSW. Highest HeV positivity occurred where black or spectacled flying-foxes were present; nil or very low positivity rates occurred in exclusive grey-headed flying-fox roosts. Similarly, little red flying-foxes are evidently not a significant source of virus, as their periodic extreme increase in numbers at some roosts was not associated with any concurrent increase in HeV detection. There was a consistent, strong winter seasonality to excretion in the southern QLD/northern NSW and central NSW regions. This new information allows risk management strategies to be refined and targeted, mindful of the potential for spatial risk profiles to shift over time with changes in flying-fox species distribution.  相似文献   

4.
5.
Breed AC  Breed MF  Meers J  Field HE 《PloS one》2011,6(12):e28816
This study investigated the seroepidemiology of Hendra virus in a spectacled flying-fox (Pteropus conspicillatus) population in northern Australia, near the location of an equine and associated human Hendra virus infection in late 2004. The pattern of infection in the population was investigated using a serial cross-sectional serological study over a 25-month period, with blood sampled from 521 individuals over six sampling sessions. Antibody titres to the virus were determined by virus neutralisation test. In contrast to the expected episodic infection pattern, we observed that seroprevalence gradually increased over the two years suggesting infection was endemic in the population over the study period. Our results suggested age, pregnancy and lactation were significant risk factors for a detectable neutralizing antibody response. Antibody titres were significantly higher in females than males, with the highest titres occurring in pregnant animals. Temporal variation in antibody titres suggests that herd immunity to the virus may wax and wane on a seasonal basis. These findings support an endemic infection pattern of henipaviruses in bat populations suggesting their infection dynamics may differ significantly from the acute, self limiting episodic pattern observed with related viruses (e.g. measles virus, phocine distemper virus, rinderpest virus) hence requiring a much smaller critical host population size to sustain the virus. These findings help inform predictive modelling of henipavirus infection in bat populations, and indicate that the life cycle of the reservoir species should be taken into account when developing risk management strategies for henipaviruses.  相似文献   

6.
Flying-foxes (pteropid bats) are the natural host of Hendra virus, a recently emerged zoonotic virus responsible for mortality or morbidity in horses and humans in Australia since 1994. Previous studies have suggested physiological and ecological risk factors for infection in flying-foxes, including physiological stress. However, little work has been done measuring and interpreting stress hormones in flying-foxes. Over a 12-month period, we collected pooled urine samples from underneath roosting flying-foxes, and urine and blood samples from captured individuals. Urine and plasma samples were assayed for cortisol using a commercially available enzyme immunoassay. We demonstrated a typical post-capture stress response in flying-foxes, established urine specific gravity as an attractive alternative to creatinine to correct urine concentration, and established population-level urinary cortisol ranges (and geometric means) for the four Australian species: Pteropus alecto 0.5–305.1 ng/mL (20.1 ng/mL); Pteropus conspicillatus 0.3–370.9 ng/mL (18.9 ng/mL); Pteropus poliocephalus 0.3–311.3 ng/mL (10.1 ng/mL); Pteropus scapulatus 5.2–205.4 ng/mL (40.7 ng/mL). Geometric means differed significantly except for P. alecto and P. conspicillatus. Our approach is methodologically robust, and has application both as a research or clinical tool for flying-foxes, and for other free-living colonial wildlife species.  相似文献   

7.
Isolation of Nipah virus from Malaysian Island flying-foxes   总被引:17,自引:0,他引:17  
In late 1998, Nipah virus emerged in peninsular Malaysia and caused fatal disease in domestic pigs and humans and substantial economic loss to the local pig industry. Surveillance of wildlife species during the outbreak showed neutralizing antibodies to Nipah virus mainly in Island flying-foxes (Pteropus hypomelanus) and Malayan flying-foxes (Pteropus vampyrus) but no virus reactive with anti-Nipah virus antibodies was isolated. We adopted a novel approach of collecting urine from these Island flying-foxes and swabs of their partially eaten fruits. Three viral isolates (two from urine and one from a partially eaten fruit swab) that caused Nipah virus-like syncytial cytopathic effect in Vero cells and stained strongly with Nipah- and Hendra-specific antibodies were isolated. Molecular sequencing and analysis of the 11,200-nucleotide fragment representing the beginning of the nucleocapsid gene to the end of the glycoprotein gene of one isolate confirmed the isolate to be Nipah virus with a sequence deviation of five to six nucleotides from Nipah virus isolated from humans. The isolation of Nipah virus from the Island flying-fox corroborates the serological evidence that it is one of the natural hosts of the virus.  相似文献   

8.
Bats of the genus Pteropus (Pteropodidae) are recognised as the natural host of multiple emerging pathogenic viruses of animal and human health significance, including henipaviruses, lyssaviruses and ebolaviruses. Some studies have suggested that physiological and ecological factors may be associated with Hendra virus infection in flying-foxes in Australia; however, it is essential to understand the normal range and seasonal variability of physiological biomarkers before seeking physiological associations with infection status. We aimed to measure a suite of physiological biomarkers in P. alecto over time to identify any seasonal fluctuations and to examine possible associations with life-cycle and environmental stressors. We sampled 839 adult P. alecto in the Australian state of Queensland over a 12-month period. The adjusted population means of every assessed hematologic and biochemical parameter were within the reported reference range on every sampling occasion. However, within this range, we identified significant temporal variation in these parameters, in urinary parameters and body condition, which primarily reflected the normal annual life cycle. We found no evident effect of remarkable physiological demands or nutritional stress, and no indication of clinical disease driving any parameter values outside the normal species reference range. Our findings identify underlying temporal physiological changes at the population level that inform epidemiological studies and assessment of putative physiological risk factors driving Hendra virus infection in P. alecto. More broadly, the findings add to the knowledge of Pteropus populations in terms of their relative resistance and resilience to emerging infectious disease.  相似文献   

9.
Fruit bats of the genus Pteropus (commonly known as flying-foxes) are the natural hosts of several recently emerged zoonotic viruses of animal and human health significance in Australia and Asia, including Hendra and Nipah viruses. Satellite telemetry was used on nine flying-foxes of three species (Pteropus alecto n = 5, P. vampyrus n = 2, and P. neohibernicus n = 2) to determine the scale and pattern of their long-distance movements and their potential to transfer these viruses between countries in the region. The animals were captured and released from six different locations in Australia, Papua New Guinea, Indonesia, and Timor-Leste. Their movements were recorded for a median of 120 (range, 47–342) days with a median total distance travelled of 393 (range, 76–3011) km per individual. Pteropus alecto individuals were observed to move between Australia and Papua New Guinea (Western Province) on four occasions, between Papua New Guinea (Western Province) and Indonesia (Papua) on ten occasions, and to traverse Torres Strait on two occasions. Pteropus vampyrus was observed to move between Timor-Leste and Indonesia (West Timor) on one occasion. These findings expand upon the current literature on the potential for transfer of zoonotic viruses by flying-foxes between countries and have implications for disease risk management and for the conservation management of flying-fox populations in Australia, New Guinea, and the Lesser Sunda Islands.  相似文献   

10.
Flying-foxes provide critical ecosystem services, but their role as hosts to zoonotic pathogens may undermine conservation support. We surveyed 214 residents of Cairns, Australia, regarding their perceptions about health risks associated with flying-foxes and support for flying-fox conservation. Greater likelihood of handling a flying-fox was associated with lower knowledge about risks, greater conservation support, and environmental organization membership. Respondents less likely to seek medical attention after a minor scratch tended to be younger, unemployed and perceive lower risk. Individuals who support flying-fox conservation should be one group targeted in One Health communication integrating health and conservation messages.  相似文献   

11.
Hendra virus (HeV) is a lethal paramyxovirus which emerged in humans in 1994. Poor understanding of HeV dynamics in Pteropus spp. (flying fox or fruit bat) reservoir hosts has limited our ability to determine factors driving its emergence. We initiated a longitudinal field study of HeV in little red flying foxes (LRFF; Pteropus scapulatus) and examined individual and population risk factors for infection, to determine probable modes of intraspecific transmission. We also investigated whether seasonal changes in host behaviour, physiology and demography affect host-pathogen dynamics. Data showed that pregnant and lactating females had significantly higher risk of infection, which may explain previously observed temporal associations between HeV outbreaks and flying fox birthing periods. Age-specific seroprevalence curves generated from field data imply that HeV is transmitted horizontally via faeces, urine or saliva. Rapidly declining seroprevalence between two field seasons suggests that immunity wanes faster in LRFF than in other flying fox species, and highlights the potentially critical role of this species in interspecific viral persistence. The highest seroprevalence was observed when animals showed evidence of nutritional stress, suggesting that environmental processes that alter flying fox food sources, such as habitat loss and climate change, may increase HeV infection and transmission. These insights into the ecology of HeV in flying fox populations suggest causal links between anthropogenic environmental change and HeV emergence.  相似文献   

12.
Hendra virus is a highly pathogenic novel paramyxovirus causing sporadic fatal infection in horses and humans in Australia. Species of fruit-bats (genus Pteropus), commonly known as flying-foxes, are the natural host of the virus. We undertook a survey of horse owners in the states of Queensland and New South Wales, Australia to assess the level of adoption of recommended risk management strategies and to identify impediments to adoption. Survey questionnaires were completed by 1431 respondents from the target states, and from a spectrum of industry sectors. Hendra virus knowledge varied with sector, but was generally limited, with only 13% of respondents rating their level of knowledge as high or very high. The majority of respondents (63%) had seen their state’s Hendra virus information for horse owners, and a similar proportion found the information useful. Fifty-six percent of respondents thought it moderately, very or extremely likely that a Hendra virus case could occur in their area, yet only 37% said they would consider Hendra virus if their horse was sick. Only 13% of respondents stabled their horses overnight, although another 24% said it would be easy or very easy to do so, but hadn’t done so. Only 13% and 15% of respondents respectively had horse feed bins and water points under solid cover. Responses varied significantly with state, likely reflecting different Hendra virus history. The survey identified inconsistent awareness and/or adoption of available knowledge, confusion in relation to Hendra virus risk perception, with both over-and under-estimation of true risk, and lag in the uptake of recommended risk minimisation strategies, even when these were readily implementable. However, we also identified frustration and potential alienation by horse owners who found the recommended strategies impractical, onerous and prohibitively expensive. The insights gained from this survey have broader application to other complex risk-management scenarios.  相似文献   

13.
Little is known about the effects of temperature extremes on natural systems. This is of increasing concern now that climate models predict dramatic increases in the intensity, duration and frequency of such extremes. Here we examine the effects of temperature extremes on behaviour and demography of vulnerable wild flying-foxes (Pteropus spp.). On 12 January 2002 in New South Wales, Australia, temperatures exceeding 42 degrees C killed over 3500 individuals in nine mixed-species colonies. In one colony, we recorded a predictable sequence of thermoregulatory behaviours (wing-fanning, shade-seeking, panting and saliva-spreading, respectively) and witnessed how 5-6% of bats died from hyperthermia. Mortality was greater among the tropical black flying-fox, Pteropus alecto (10-13%) than the temperate grey-headed flying-fox, Pteropus poliocephalus (less than 1%), and young and adult females were more affected than adult males (young, 23-49%; females, 10-15%; males, less than 3%). Since 1994, over 30000 flying-foxes (including at least 24500 P. poliocephalus) were killed during 19 similar events. Although P. alecto was relatively less affected, it is currently expanding its range into the more variable temperature envelope of P. poliocephalus, which increases the likelihood of die-offs occurring in this species. Temperature extremes are important additional threats to Australian flying-foxes and the ecosystem services they provide, and we recommend close monitoring of colonies where temperatures exceeding 42.0 degrees C are predicted. The effects of temperature extremes on flying-foxes highlight the complex implications of climate change for behaviour, demography and species survival.  相似文献   

14.
Urbanisation of wildlife populations is a process with significant conservation and management implications. While urban areas can provide habitat for wildlife, some urbanised species eventually come into conflict with humans. Understanding the process and drivers of wildlife urbanisation is fundamental to developing effective management responses to this phenomenon. In Australia, flying-foxes (Pteropodidae) are a common feature of urban environments, sometimes roosting in groups of tens of thousands of individuals. Flying-foxes appear to be becoming increasingly urbanised and are coming into increased contact and conflict with humans. Flying-fox management is now a highly contentious issue. In this study we used monitoring data collected over a 15 year period (1998–2012) to examine the spatial and temporal patterns of association of spectacled flying-fox (Pteropus conspicillatus) roost sites (camps) with urban areas. We asked whether spectacled flying-foxes are becoming more urbanised and test the hypothesis that such changes are associated with anthropogenic changes to landscape structure. Our results indicate that spectacled flying-foxes were more likely to roost near humans than might be expected by chance, that over the period of the study the proportion of the flying-foxes in urban-associated camps increased, as did the number of urban camps. Increased urbanisation of spectacled flying-foxes was not related to changes in landscape structure or to the encroachment of urban areas on camps. Overall, camps tended to be found in areas that were more fragmented, closer to human habitation and with more urban land cover than the surrounding landscape. This suggests that urbanisation is a behavioural response rather than driven by habitat loss.  相似文献   

15.
Pteropid bats or flying-foxes (Chiroptera: Pteropodidae) are the natural host of Hendra virus (HeV) which sporadically causes fatal disease in horses and humans in eastern Australia. While there is strong evidence that urine is an important infectious medium that likely drives bat to bat transmission and bat to horse transmission, there is uncertainty about the relative importance of alternative routes of excretion such as nasal and oral secretions, and faeces. Identifying the potential routes of HeV excretion in flying-foxes is important to effectively mitigate equine exposure risk at the bat-horse interface, and in determining transmission rates in host-pathogen models. The aim of this study was to identify the major routes of HeV excretion in naturally infected flying-foxes, and secondarily, to identify between-species variation in excretion prevalence. A total of 2840 flying-foxes from three of the four Australian mainland species (Pteropus alecto, P. poliocephalus and P. scapulatus) were captured and sampled at multiple roost locations in the eastern states of Queensland and New South Wales between 2012 and 2014. A range of biological samples (urine and serum, and urogenital, nasal, oral and rectal swabs) were collected from anaesthetized bats, and tested for HeV RNA using a qRT-PCR assay targeting the M gene. Forty-two P. alecto (n = 1410) had HeV RNA detected in at least one sample, and yielded a total of 78 positive samples, at an overall detection rate of 1.76% across all samples tested in this species (78/4436). The rate of detection, and the amount of viral RNA, was highest in urine samples (>serum, packed haemocytes >faecal >nasal >oral), identifying urine as the most plausible source of infection for flying-foxes and for horses. Detection in a urine sample was more efficient than detection in urogenital swabs, identifying the former as the preferred diagnostic sample. The detection of HeV RNA in serum is consistent with haematogenous spread, and with hypothesised latency and recrudesence in flying-foxes. There were no detections in P. poliocephalus (n = 1168 animals; n = 2958 samples) or P. scapulatus (n = 262 animals; n = 985 samples), suggesting (consistent with other recent studies) that these species are epidemiologically less important than P. alecto in HeV infection dynamics. The study is unprecedented in terms of the individual animal approach, the large sample size, and the use of a molecular assay to directly determine infection status. These features provide a high level of confidence in the veracity of our findings, and a sound basis from which to more precisely target equine risk mitigation strategies.  相似文献   

16.
Filoviruses Ebolavirus (EBOV) and Marburgvirus (MARV) cause haemorrhagic fevers with high mortality rates, posing significant threats to public health. To understand transmission into human populations, filovirus dynamics within reservoir host populations must be understood. Studies have directly linked filoviruses to bats, but the mechanisms allowing viral persistence within bat populations are poorly understood. Theory suggests seasonal birthing may decrease the probability of pathogen persistence within populations, but data suggest MARV may persist within colonies of seasonally breeding Egyptian fruit bats, Rousettus aegyptiacus. I synthesize available filovirus and bat data in a stochastic compartmental model to explore fundamental questions relating to filovirus ecology: can filoviruses persist within isolated bat colonies; do critical community sizes exist; and how do host–pathogen relationships affect spillover transmission potential? Synchronous annual breeding and shorter incubation periods did not allow filovirus persistence, whereas bi-annual breeding and longer incubation periods, such as reported for Egyptian fruit bats and EBOV in experimental studies, allowed persistence in colony sizes often found in nature. Serological data support the findings, with bats from species with two annual birth pulses more likely to be seropositive (odds ratio (OR) 4.4, 95% confidence interval (CI) 2.5–8.7) than those with one, suggesting that biannual birthing is necessary for filovirus persistence.  相似文献   

17.
Antibody prevents virus reactivation within the central nervous system.   总被引:7,自引:0,他引:7  
The neurotropic JHM strain of mouse hepatitis virus (JHMV) produces an acute CNS infection characterized by encephalomyelitis and demyelination. The immune response cannot completely eliminate virus, resulting in persistence associated with chronic ongoing CNS demyelination. The contribution of humoral immunity to viral clearance and persistent infection was investigated in mice homozygous for disruption of the Ig mu gene (IgM-/-). Acute disease developed with equal kinetics and severity in IgM-/- and syngeneic C57BL/6 (wt) mice. However, clinical disease progressed in IgM-/- mice, while wt mice recovered. Viral clearance during acute infection was similar in both groups, supporting a primary role of cell-mediated immunity in viral clearance. In contrast to wt mice, in which infectious virus was reduced to below detection following acute infection, increasing infectious virus was recovered from the CNS of the IgM-/- mice following initial clearance. No evidence was obtained for selection of variant viruses nor was there an apparent loss of cell-mediated immunity in the absence of Ab. Passive transfer of anti-JHMV Ab following initial clearance prevented reactivation of infectious virus within the CNS of IgM-/- mice. These data demonstrate the clearance of infectious virus during acute disease by cell-mediated immunity. However, immunologic control is not maintained in the absence of anti-viral Ab, resulting in recrudescence of infectious virus. These data suggest that humoral immunity plays no role in controlling virus during acute infection, but plays an important role in establishing and maintaining CNS viral persistence.  相似文献   

18.
19.
Bats carry a variety of paramyxoviruses that impact human and domestic animal health when spillover occurs. Recent studies have shown a great diversity of paramyxoviruses in an urban-roosting population of straw-colored fruit bats in Ghana. Here, we investigate this further through virus isolation and describe two novel rubulaviruses: Achimota virus 1 (AchPV1) and Achimota virus 2 (AchPV2). The viruses form a phylogenetic cluster with each other and other bat-derived rubulaviruses, such as Tuhoko viruses, Menangle virus, and Tioman virus. We developed AchPV1- and AchPV2-specific serological assays and found evidence of infection with both viruses in Eidolon helvum across sub-Saharan Africa and on islands in the Gulf of Guinea. Longitudinal sampling of E. helvum indicates virus persistence within fruit bat populations and suggests spread of AchPVs via horizontal transmission. We also detected possible serological evidence of human infection with AchPV2 in Ghana and Tanzania. It is likely that clinically significant zoonotic spillover of chiropteran paramyxoviruses could be missed throughout much of Africa where health surveillance and diagnostics are poor and comorbidities, such as infection with HIV or Plasmodium sp., are common.  相似文献   

20.
Flying-foxes are better able to defend haemoglobin against autoxidation than non-volant mammals such as sheep. When challenged with the common physiological oxidant, hydrogen peroxide, haemolysates of flying-fox red blood cells (RBC) were far less susceptible to methaemoglobin formation than sheep. Challenge with 1-acetyl-2-phenylhydrazine (APH) caused only half as much methaemoglobin formation in flying-fox as in ovine haemolysates. When intact cells were challenged with phenazine methosulfate (PMS), flying-fox RBC partially reversed the oxidant damage, and reduced methaemoglobin from 40 to 20% over 2 h incubation, while ovine methaemoglobin remained at 40%. This reflected flying-fox cells’ capacity to replenish GSH fast enough that it did not deplete beyond 50%, while ovine RBC GSH was depleted to around 20%. The greater capacity of flying-foxes to defend haemoglobin against oxidant damage may be explained in part by antioxidant enzymes catalase, superoxide dismutase and cytochrome-b 5 reductase having two- to four-fold higher activity than in sheep (P < 0.001). Further, their capacity to limit GSH depletion to 50% and reduce methaemoglobin (in the presence of glucose), despite ongoing exposure to PMS may result from having ten-fold higher activity of G6PD and 6PGD than sheep (P < 0.001), indicating the presence of a very efficient pentose phosphate pathway in flying-foxes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号