首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our objective was to determine use by avian species (e.g., piscivores, marsh birds, waterfowl, selected passerines) of 29 wetlands in areas with low (<200 μeq l−1) acid-neutralizing capacity (ANC) in southeastern Maine. We documented bird, pair, and brood use during 1982–1984 and in 1982 we sampled 10 wetlands with a sweep net to collect invertebrates. We related mean numbers of invertebrates per wetland to water chemistry, basin characteristics, and avian use of different wetland types. Shallow, beaver (Castor canadensis)-created wetlands with the highest phosphorus levels and abundant and varied macrophyte assemblages supported greater densities of macroinvertebrates and numbers of duck broods (88.3% of all broods) in contrast to deep, glacial type wetlands with sparse vegetation and lower invertebrate densities that supported fewer broods (11.7%). Low pH may have affected some acid-intolerant invertebrate taxa (i.e., Ephemeroptera), but high mean numbers of Insecta per wetland were recorded from wetlands with a pH of 5.51. Other Classes and Orders of invertebrates were more abundant on wetlands with pH > 5.51. All years combined use of wetlands by broods was greater on wetlands with pH ≤ 5.51 (77.4%) in contract to wetlands with pH > 5.51 that supported 21.8% of the broods. High mean brood density was associated with mean number of Insecta per wetland. For lentic wetlands created by beaver, those habitats contained vegetative structure and nutrients necessary to provide cover to support invertebrate populations that are prey of omnivore and insectivore species. The fishless status of a few wetlands may have affected use by some waterfowl species and obligate piscivores.  相似文献   

2.
We studied wetland development in a chronosequence of created wetlands in a reclaimed landscape in east Texas seasonally for 1 year. The purpose of the study was to identify features (i.e., indicators) that best reflected changes in wetland ecosystem state through time and could serve as indicators of “maturity” for bond-release. Features considered included surface water nutrients, soil nutrients, soil redox potential, vegetative biomass and diversity, and benthic invertebrate biomass and diversity. Our sampling focused on nine wetlands representing three different-age classes (n = 3 for each) as a surrogate for time. All wetland sites were created with the same homogenized mine spoil and had similar hydrology and climate. Age-specific changes in all parameters were observed, except for surface water nutrients. The oldest wetlands (i.e., “mature”) exhibited highest soil concentrations of N, C, K, P, and Ca. Soil redox potential was significantly lower in the mature wetlands, in addition to within-wetland (lowest in deepest sampling zones) and intra-annual variability (i.e., lowest during the summer). Mature created wetlands supported the highest vegetative biomass and species richness and highest densities of invertebrates; however, taxa richness was similar across all age groups. Of all parameters we measured, vegetation metrics were among the simplest and most cost-effective measures used to track the early development of mitigated wetlands. This study provides the basis from which to track the development of these reclaimed ecosystems in a more rigorous and easily replicated manner. With further validation, select use of these parameter sets in east Texas and other similar landscapes could aid both in determining compliance for regulatory purposes as well as tracking success of ecological mitigation.  相似文献   

3.
Wetlands are among the most threatened ecosystems worldwide due to climate change and land-use conversion. Regional biodiversity of temporary wetlands is dependent on the existence of habitat complexes with variable hydroperiods. Because temperature and rainfall regimes are predicted to shift globally, together with land-use patterns, different scenarios of wetland loss are expected in the future. To understand how wetland biodiversity might change in the future, it is important to evaluate how the loss of particular hydroperiods will affect overall diversity in a region. Using invertebrate datasets from five wetland complexes distributed across South and North America, we calculated beta diversity metrics for each region. Then we contrasted those metrics to simulations of sequential deletions of subsets (30%) of the long-, moderate- and short-hydroperiod wetlands to assess which wetland class would most affect invertebrate beta diversity in each region. Deletions of the short-hydroperiod wetlands led to the most significant decline in beta diversity. However, deletion effects of different wetland classes varied across study regions, with a negative correlation existing between deletions of the long- and short-hydroperiod wetlands on invertebrate beta diversity. Our simulations indicate that loss of short-hydroperiod wetlands will have the most significant effects on invertebrate beta diversity, but loss of long-hydroperiod wetlands will also be important. Thus, wetlands from both hydroperiod extremes should be considered when assessing potential biodiversity declines associated with habitat loss.  相似文献   

4.
Livestock grazing is a prevalent land use in western North American intermountain wetlands, and physical and biotic changes related to grazing-related disturbance can potentially limit wetland habitat value for waterfowl. We evaluated breeding waterfowl use in 34 wetlands in relation to water retention, amount of wetlands on the landscape, and livestock grazing intensity. The study was conducted over 2 years in the southern intermountain region of British Columbia, Canada. For a subset of 17 wetlands, we measured aquatic invertebrate abundance over 1 year. Waterfowl breeding pairs and broods were classified into three functional groups: dabbling ducks, and two types of diving ducks, overwater and cavity nesters. We evaluated candidate models with variables considered singly and in combination using the Akaike Information Criterion. When selected, bare ground (an indicator of grazing intensity) and wetland density were negatively associated with breeding use while wetland fullness and invertebrate density were positively associated. Each factor was a significant predictor in at least one of the models, but unexpectedly, grazing intensity was the most consistent predictor of waterfowl wetland use (e.g., it was present in more ‘best models’ than wetland fullness). Grazing was associated with declines in the number of waterfowl pairs and broods, likely mediated through effects on wetland vegetation and aquatic macroinvertebrates. Models with site- and landscape-scale variables generally performed better than simpler models. Waterfowl breeding use of wetlands can be improved by reduced livestock grazing intensity adjacent to wetlands and by grazing later in the season. Wetland water retention is also an important constraint on waterfowl use of wetlands and may become more limiting with a shifting climate.  相似文献   

5.
滇西北高原湿地景观变化与人为、自然因子的相关性   总被引:4,自引:0,他引:4  
人为活动的干扰与自然因子的变化共同作用于湿地生态系统,但两者对湿地生态系统作用的贡献率存在差异,目前尚缺乏进一步的研究。本研究基于面向对象分割和目视解译相结合的技术方法,研究了滇西北高原典型湿地纳帕海汇水区内28年来(1987—2015年)的湿地类型、分布及其空间格局的变化特征,并探讨其与当地人为活动的干扰(主要社会经济发展指标)、自然因子(主要气候因子)之间的相互关系。结果表明:(1)湿地总面积共计减少2456.46 hm~2,其中,原生沼泽、沼泽化草甸和草甸面积分别减少了1152.07,1257.72,202.74 hm~2,湖泊面积增加了156.07 hm~2;(2)湿地景观多样性发生显著变化,其中,斑块数量(NP)由1987年的221增加到2005年的299,随后减少到2015年的260;香农多样性指数(SHDI)由1987年的1.81增加到1999年的1.84,随后减少到2015年的1.75;聚集度指数(contagion index)由1987年的52.82减少到1999年的52.02,随后增加到2015年的53.49;(3)湿地分布面积和香农多样性指数与第一、二、三产业值,以及年均温度呈负相关,与降水量呈正相关;斑块数量、聚集度指数均与第一、二、三产业值,以及年均温度呈正相关,与降水量呈负相关;(4)社会经济发展主要指标对湿地面积和景观多样性指数变化的解释度为63.50%,气候因子对其的解释度为36.50%。整体上,人为活动的干扰是导致该区域湿地不断萎缩、景观多样性改变的关键驱动力。减缓人为活动对湿地生态系统的过度影响,是当地保护湿地资源、维护湿地生态功能的关键。  相似文献   

6.
Changes in vegetation phenology directly reflect the response of vegetation growth to climate change. In this study, using the Normalized Difference Vegetation Index dataset from 1982 to 2015, we extracted start date of vegetation growing season (SOS), end date of vegetation growing season (EOS), and length of vegetation growing season (LOS) in the middle and eastern Eurasia region and evaluated linear trends in SOS, EOS, and LOS for the entire study area, as well as for four climatic zones. The results show that the LOS has significantly increased by 0.27 days/year, mostly due to a significantly advanced SOS (?0.20 days/year) and a slightly delayed EOS (0.07 days/year) over the entire study area from 1982 to 2015. The vegetation phenology trends in the four climatic zones are not continuous throughout the 34‐year period. Furthermore, discrepancies in the shifting patterns of vegetation phenology trend existed among different climatic zones. Turning points (TP) of SOS trends in the Cold zone, Temperate zone, and Tibetan Plateau zone occurred in the mid‐ or late 1990s. The advanced trends of SOS in the Cold zone, Temperate zone, and Tibetan Plateau zone exhibited accelerated, stalled, and reversed patterns after the corresponding TP, respectively. The TP did not occurred in Cold‐Temperate zone, where the SOS showed a consistent and continuous advance. TPs of EOS trends in the Cold zone, Cold‐Temperate zone, Temperate zone, and Tibetan Plateau zone occurred in the late 1980s or mid‐1990s. The EOS in the Cold zone, Cold‐Temperate zone, Temperate zone, and Tibetan Plateau zone showed weak advanced or delayed trends after the corresponding TP, which were comparable with the delayed trends before the corresponding TP. The shift patterns of LOS trends were primarily influenced by the shift patterns of SOS trends and were also heterogeneous within climatic zones.  相似文献   

7.
Changhao Jin 《Hydrobiologia》2008,598(1):257-270
Freshwater wetlands worldwide are under threat from secondary salinisation and climate change. Given that many freshwater wetlands naturally have highly variable hydrology, it is important to understand the combined effects of salinity and water regime on wetland biodiversity. Here a mathematical model has been developed to explore the biodiversity dynamics of freshwater wetland ecosystems affected by secondary salinisation and seasonal hydrology variation. The model shows that seasonal hydrological change can drive the wetland ecosystem into a stable oscillatory state of biodiversity, with the same period as the wetting and drying cycle. The initial condition of a wetland mediates the ecological response of the wetland ecosystem to salinity and seasonal variability. There are two manifestations of stability that occur in relation to wetland biodiversity: monostability and bistability. In model simulations, some wetland ecosystems may respond to the effects of seasonal change quickly, while others may do so more slowly. In ‘slow response’ wetlands, seasonal variability has a weak impact on the ecosystem properties of stability, resilience, sensitivity and the species richness–mean salinity relationship. In contrast, ‘fast response’ wetlands are seasonally controlled heavily. Seasonal variability can play a critical role in determining ecosystem properties. Changes in the strength of seasonality can induce the transition between monostability and bistability. Seasonal variability may also reduce wetland resilience, exacerbating the risk of secondary salinisation. On the other hand, seasonal variability may provide opportunities for the restoration of salinised wetlands by increasing their sensitivity to management actions and facilitating recovery processes. Model simulations show that the response of the stable biodiversity oscillation to changing mean salinity is dependent on seasonality strength (primarily for fast response wetlands) and other wetland conditions. Generally, there are two types of wetland responses to changes in mean salinity: type 1 wetlands exhibit a graded response of species richness (a surrogate for biodiversity), whereas a hysteretic response occurs in type 2 wetlands. Species diversity displays critical behaviour: regime shifts in diversity occur at the thresholds of mean salinity, strength of seasonality or initial species diversity. The predictions are consistent with previously-published field observations in salinised freshwater wetlands. Handling editor: D. Hamilton  相似文献   

8.
Deforestation and agricultural expansion in the tropics affect local and regional climatic conditions, leading to synergistic negative impacts on land ecosystems. Climatic changes manifest in increased inter‐ and intraseasonal variations and frequency of extreme climatic events (i.e., droughts and floods), which have evident consequences for aboveground biodiversity. However, until today, there have been no studies on how land use affects seasonal variations below ground in tropical ecosystems, which may be more buffered against climatic variation. Here, we analyzed seasonal variations in soil parameters, basal respiration, microbial communities, and abundances of soil invertebrates along with microclimatic conditions in rainforest and monocultures of oil palm and rubber in Sumatra, Indonesia. About 75% (20 out of 26) of the measured litter and soil, microbial, and animal parameters varied with season, with seasonal changes in 50% of the parameters depending on land use. Land use affected seasonal variations in microbial indicators associated with carbon availability and cycling rate. The magnitude of seasonal variations in microbial parameters in the soil of monocultures was almost 40% higher than in the soil of rainforest. Measured parameters were associated with short‐term climatic conditions (3‐day period air humidity) in plantations, but not in rainforest, confirming a reduced soil buffering ability in plantations. Overall, our findings suggest that land use temporally shifts and increases the magnitude of seasonal variations of the belowground ecosystem compartment, with microbial communities responding most strongly. The increased seasonal variations in soil biota in plantations likely translate into more pronounced fluctuations in essential ecosystem functions such as nutrient cycling and carbon sequestration, and these ramifications ultimately may compromise the stability of tropical ecosystems in the long term. As the observed seasonal dynamics is likely to increase with both local and global climate change, these shifts need closer attention for the long‐term sustainable management of plantation systems in the tropics.  相似文献   

9.
Assessments of wetland condition are generally based on measures of variables related to plants or large animals (birds, fish), and catchment or landscape features. This approach ignores the considerable biodiversity and functional values of small aquatic organisms. The aim of this study was to assess the correspondence between landscape-based indices of wetland condition and the community composition of both aquatic invertebrates and diatoms across a broad range of wetlands in the West Coast region of New Zealand. Aquatic invertebrates and diatoms were sampled from 29 lowland wetlands subject to varying degrees of catchment modification. Wetland condition was assessed independently using two methods: a field-based method to give the Wetland Condition Index, and a GIS-based method that gave an Index of Ecological Integrity. Strong relationships existed between community composition and pH, so we partitioned the community data into groups according to wetland pH. We found only weak relationships between wetland condition scores and invertebrate and diatom communities within each pH group. In most cases, data describing the nutrient status of the water had the strongest influence on invertebrate and diatom communities. Lack of strong associations between measured wetland condition indices and either diatom or invertebrate community composition suggests that neither index was dominated by variables directly influencing the aquatic component of wetland biota. The challenges now are to identify the critical variables, and to develop complementary wetland scoring systems that better reflect the status of small aquatic organisms.  相似文献   

10.
Wetlands are globally important ecosystems that provide critical services for natural communities and human society. Montane wetland ecosystems are expected to be among the most sensitive to changing climate, as their persistence depends on factors directly influenced by climate (e.g. precipitation, snowpack, evaporation). Despite their importance and climate sensitivity, wetlands tend to be understudied due to a lack of tools and data relative to what is available for other ecosystem types. Here, we develop and demonstrate a new method for projecting climate-induced hydrologic changes in montane wetlands. Using observed wetland water levels and soil moisture simulated by the physically based Variable Infiltration Capacity (VIC) hydrologic model, we developed site-specific regression models relating soil moisture to observed wetland water levels to simulate the hydrologic behavior of four types of montane wetlands (ephemeral, intermediate, perennial, permanent wetlands) in the U. S. Pacific Northwest. The hybrid models captured observed wetland dynamics in many cases, though were less robust in others. We then used these models to a) hindcast historical wetland behavior in response to observed climate variability (1916–2010 or later) and classify wetland types, and b) project the impacts of climate change on montane wetlands using global climate model scenarios for the 2040s and 2080s (A1B emissions scenario). These future projections show that climate-induced changes to key driving variables (reduced snowpack, higher evapotranspiration, extended summer drought) will result in earlier and faster drawdown in Pacific Northwest montane wetlands, leading to systematic reductions in water levels, shortened wetland hydroperiods, and increased probability of drying. Intermediate hydroperiod wetlands are projected to experience the greatest changes. For the 2080s scenario, widespread conversion of intermediate wetlands to fast-drying ephemeral wetlands will likely reduce wetland habitat availability for many species.  相似文献   

11.
Wetland invertebrates have evolved numerous means of inhabiting spatially and temporally flooded wetland environments. The ability of invertebrates to either colonize from other sources and/or to persist in dry wetlands through diapause has seldom been simultaneously studied. We compared strategies of colonization and persistence by invertebrates in variable environments (playa wetlands on the Southern High Plains of Texas). We also examined emergence response time, following flooding, of taxa that persist in playa soil using field experiments and microcosms. At least 26 of 87 invertebrate taxa survive seasonal drying of playas through aestivation in soil. More invertebrate taxa only colonized flooded playas (70.1%) than only persisted in dry soil (29.9%) (P < 0.05). Of the invertebrate taxa that persisted in dry soil, more (P < 0.05) of these were active colonists or relied strictly on diapause rather than a combination of aestivation and colonization. Invertebrate densities were not statistically different among taxa that practiced colonization and persistence (5.2 invertebrates/m2, SE = 2.0) or that only persisted (1.5 invertebrates/m2, SE = 0.5) in playas (P=0.918). The average amount of time for a taxon to first appear in a microcosm was about 3 weeks less in 1995–96 than 1994–95, which was likely due to greater precipitation during 1995–96. We found that both colonization and persistence was practiced more often than a single strategy for those invertebrates sampled in microcosms. Conservation efforts for playa invertebrates should be implemented at the landscape level and focus on playas with intact watersheds, because these playas have relatively undisturbed hydroperiods.  相似文献   

12.
董李勤  章光新  张昆 《生态学报》2015,35(18):6165-6172
探讨了嫩江流域湿地生态需水量的计算方法,并对流域内不同降水频率下湿地生态需水量进行了计算。在此基础上,选择CMIP全球气候模式下RCP2.6、RCP4.5和RCP8.5等3种排放情景,预测2030年、2050年和2100年嫩江流域湿地生态需水量的变化趋势。研究结果表明:不同降水频率下的流域湿地生态需水量分别为丰水年70.284亿m3,平水年118.696亿m3,枯水年169.343亿m3,反映了其与气候条件的相关性。3种排放情景下湿地生态需水量变化受到最高、最低气温和降水量变化的共同影响,其中RCP2.6情景下需水量呈先增加后减少的趋势;RCP4.5和RCP8.5情景下需水量整体呈增加趋势,到2100年分别达到147.337亿m3和132.659亿m3。气候变化条件下,如何协调水资源需求间的矛盾,维持湿地生态系统健康稳定,将是未来研究关注的重点。  相似文献   

13.
1. We compared the size distribution of aquatic invertebrates in two prairie wetlands, one supporting a population of fathead minnows and the other fishless. Both wetlands were sampled in three depth zones on three dates, allowing assessment of temporal and spatial variation.
2. We determined biomass of aquatic invertebrates in 17 log2 size classes, and used these data to develop normalized size spectra. We also coupled size distributions with an allometric model to estimate relative production at the community level.
3. The composition of the invertebrate communities differed greatly between sites, and invertebrate biomass was higher in nearly all size classes in the fishless wetland. Intercepts of normalized size spectra were significantly different between wetlands, but slopes generally were not, indicating differences in standing-stock biomass but similar size structures between the two invertebrate communities. Higher standing-stock biomass in the fishless wetland resulted in higher relative production per unit area, but similar size distributions resulted in similar mass-specific production (P/B) between wetlands.
4. Our results indicate that invertebrate communities in prairie wetlands may have relatively consistent size structures in spite of large differences in community composition and standing-stock biomass. We hypothesize that the observed differences are because of predation by the minnow population and/or differences in the macrophyte communities between the two sites. However, the relative importance of macrophytes and fish predation in structuring invertebrate communities in prairie wetlands is poorly known.  相似文献   

14.
基于遥感的湿地景观格局季相分析   总被引:1,自引:0,他引:1  
谢静  王宗明  任春颖 《生态学报》2014,34(24):7149-7157
以中国东北地区三江平原北部为研究区域,利用2012年多季相遥感影像作为数据源,结合野外调查数据,应用面向对象的分类方法,根据影像的物候、时相等特征,提取不同月份的湿地信息,进行景观格局季相分析。结果表明:(1)研究区湿地面积、类型格局在同一年不同季节不同月份会有不同幅度的变化,总体呈现缓增骤减的态势。湿地主要分布在低洼地区,主要湿地类型为草本沼泽,其次为河流,其他湿地占总面积比例较小。(2)研究区各阶段湿地都有转化,主要发生在湿地和非湿地之间,多数表现在草本沼泽和草地之间的转化。(3)湿地分布和湿地转化面积主要集中在低海拔区域和低坡度区域,其中海拔100 m和坡度5°以下范围内的湿地分布面积和湿地转化面积占湿地总面积及湿地转化面积的绝大部分。(4)年内季节性湿地转化与降水、温度和湿地植被物候关系密切。  相似文献   

15.
左仲武 《生态科学》2009,28(5):477-480
湿地生态系统具有重要的生态功能和社会经济价值。由于诸多因素的影响,目前全球范围内相当一部分湿地生态系统已经丧失或正在遭受不同程度的威胁,湿地生态系统已经成为近年来相关领域研究的热点之一。近年来,国内外湿地生态系统的研究主要集中在湿地生态系统生物多样性本底资料的调查、湿地生态系统的动态以及湿地生态系统胁迫因子研究、退化湿地生态系统的重建和管理,以及恢复湿地有效性的评估体系等4个方面。一些新方法、新技术也不断应用于湿地生态系统研究中。除了自然湿地外,人工湿地的构建和评价体系的建立也成为该领域研究的热点方向。影响湿地生态系统的因素涉及到自然、社会经济、文化等多个方面,加之湿地类型多样性,因此开展更为广泛的湿地生态系统结构、功能和动态的研究是十分必要的。同时,对特定区域内的湿地生态系统修复过程中的关键技术(包括物种的选择等)的研究、新方法和新手段的应用研究也应该在湿地生态系统研究中给予特别关注。  相似文献   

16.
Many wetlands have been constructed in West Virginia as mitigation for a variety of human disturbances, but no comprehensive evaluation on their success has been conducted. Macroinvertebrates are extremely valuable components of functioning wetland ecosystems. As such, benthic and water column invertebrate communities were chosen as surrogates for wetland function in the evaluation of 11 mitigation and 4 reference wetlands in West Virginia. Mitigation wetlands ranged in age from 4 to 21 years old. Overall familial richness, diversity, density and biomass were similar between mitigation and reference wetlands (p > 0.05). Within open water habitats, total benthic invertebrate density was higher in reference wetlands, but mass of common taxa from water column samples was higher in mitigation wetlands (p < 0.05) Planorbidae density from benthic samples in emergent habitats was higher in reference than mitigated wetlands. Benthic Oligochaeta density was higher across open water habitats in mitigation wetlands. All other benthic taxa were similar between wetland types. Among the most common water column orders, Isopoda density was higher in reference wetlands, but Physidae density was higher in mitigation wetlands. Within mitigation wetlands, emergent areas contained higher richness and diversity than open areas. These data indicate that mitigation and reference wetlands generally support similar invertebrate assemblages, especially among benthic populations. The few observed differences are likely attributable to differences in vegetative community composition and structure. Mitigation wetlands currently support abundant and productive invertebrate communities, and as such, provide quality habitat for wetland dependent wildlife species, especially waterbirds and anurans.  相似文献   

17.
Wetlands are crucial nodes in the carbon cycle, emitting approximately 20% of global CH4 while also sequestering 20%–30% of all soil carbon. Both greenhouse gas fluxes and carbon storage are driven by microbial communities in wetland soils. However, these key players are often overlooked or overly simplified in current global climate models. Here, we first integrate microbial metabolisms with biological, chemical, and physical processes occurring at scales from individual microbial cells to ecosystems. This conceptual scale-bridging framework guides the development of feedback loops describing how wetland-specific climate impacts (i.e., sea level rise in estuarine wetlands, droughts and floods in inland wetlands) will affect future climate trajectories. These feedback loops highlight knowledge gaps that need to be addressed to develop predictive models of future climates capturing microbial contributions. We propose a roadmap connecting environmental scientific disciplines to address these knowledge gaps and improve the representation of microbial processes in climate models. Together, this paves the way to understand how microbially mediated climate feedbacks from wetlands will impact future climate change.  相似文献   

18.
Abstract. Clonal plants play important roles in maintaining wetland ecosystems in China. By analysing 108 wetland quadrats distributed throughout China, we evaluated (1) the importance of clonal growth forms in different Chinese wetlands, (2) how the abundance of clonal plants is related to climatic and geographical conditions, and (3) how plant species diversity is related to the abundance of clonal plants. Significant differences in clonal plant importance values were found between different regions of China. Clonal plants were more important in wetland ecosystems located towards the West and North and at higher elevations and, accordingly, experiencing a colder and drier climate. Plant species diversity showed a significant inverse correlation with the importance value of ‘guerilla’‐type plants in most of the wetland regions. However, we found no significant correlation between plant species diversity and importance values of ‘phalanx’‐type plants. In most Chinese wetlands, plant species diversity decreased with increasing importance of guerilla plants and also with an increase of the entire guild of clonal plants. In wetlands with low species richness, however, plant species diversity increased with increasing importance of guerilla plants and of all clonal plants together, suggesting that in these disturbed habitats clonal growth may facilitate the establishment of other, non‐clonal wetland plants.  相似文献   

19.
20.
Due to their position at the land‐sea interface, coastal wetlands are vulnerable to many aspects of climate change. However, climate change vulnerability assessments for coastal wetlands generally focus solely on sea‐level rise without considering the effects of other facets of climate change. Across the globe and in all ecosystems, macroclimatic drivers (e.g., temperature and rainfall regimes) greatly influence ecosystem structure and function. Macroclimatic drivers have been the focus of climate change‐related threat evaluations for terrestrial ecosystems, but largely ignored for coastal wetlands. In some coastal wetlands, changing macroclimatic conditions are expected to result in foundation plant species replacement, which would affect the supply of certain ecosystem goods and services and could affect ecosystem resilience. As examples, we highlight several ecological transition zones where small changes in macroclimatic conditions would result in comparatively large changes in coastal wetland ecosystem structure and function. Our intent in this communication is not to minimize the importance of sea‐level rise. Rather, our overarching aim is to illustrate the need to also consider macroclimatic drivers within vulnerability assessments for coastal wetlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号