首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ABC lipid transporters, ABCA1 and ABCG1, are essential for maintaining lipid homeostasis in cells such as macrophages by exporting excess cholesterol to extracellular acceptors. These transporters are highly regulated at the post-translational level, including protein ubiquitination. Our aim was to investigate the role of the E3 ubiquitin ligase HECTD1, recently identified as associated with ABCG1, on ABCG1 and ABCA1 protein levels and cholesterol export function. Here, we show that HECTD1 protein is widely expressed in a range of human and murine primary cells and cell lines, including macrophages, neuronal cells and insulin secreting β-cells. siRNA knockdown of HECTD1 unexpectedly decreased overexpressed ABCG1 protein levels and cell growth, but increased native ABCA1 protein in CHO-K1 cells. Knockdown of HECTD1 in unloaded THP-1 macrophages did not affect ABCG1 but significantly increased ABCA1 protein levels, in wild-type as well as THP-1 cells that do not express ABCG1. Cholesterol export from macrophages to apoA-I over time was increased after knockdown of HECTD1, however these effects were not sustained in cholesterol-loaded cells. In conclusion, we have identified a new candidate, the E3 ubiquitin ligase HECTD1, that may be involved in the regulation of ABCA1-mediated cholesterol export from unloaded macrophages to apoA-I. The exact mechanism by which this ligase affects this pathway remains to be elucidated.  相似文献   

2.
Previous studies demonstrated that proteasome inhibition sensitizes TRAIL resistant prostate cancer cells to TRAIL-mediated apoptosis via stabilization of the active p18 subunit of caspase-8. The present study investigated the impact of proteasome inhibition on caspase-8 stability, ubiquitination, trafficking, and activation in cancer cells. Using caspase-8 deficient neuroblastoma (NB7) cells for reconstituting non-cleavable mutant forms of caspase-8, we demonstrated that the non-cleavable forms of caspase-8 are capable of inducing apoptosis comparably to wild-type caspase-8, in response to proteasome inhibitor and GST-TRAIL. Moreover in the LNCaP human prostate cancer cells, caspase-8 polyubiquitination occurs after TRAIL stimulation and caspase-8 processing. Subcellular fractionation analysis revealed caspase-8 activity in both cytosol and plasma membrane fractions in both NB7 reconstituted caspase-8 cell lines, as well the LNCaP prostate cancer cells. The present results suggest that caspase-8 stabilization through proteasome inhibition leads to reactivation of the extrinsic pathway of apoptosis and identify E3 ligase mediating caspase-8 polyubiquitination, as a novel molecular target. Inhibition of this E3 ligase in combination with TRAIL towards restoring apoptosis signaling activation may have potential therapeutic significance in resistant tumors.  相似文献   

3.
Tara was identified as an interacting partner of guanine nucleotide exchange factor Trio and TRF1. Tara is proposed to be involved in many important fundamental cellular processes, ranging from actin remodeling, directed cell movement, to cell cycle regulation. Yet, its exact roles required further elucidation. Here, we identify a novel Tara-binding protein HECTD3, a putative member of HECT E3 ubiquitin ligases. HECTD3 directly binds Tara in vitro and forms a complex with Tara in vivo. Overexpression of HECTD3 enhances the ubiquitination of Tara in vivo and promotes the turnover of Tara, whereas depletion of HECTD3 by small interfering RNA decreases Tara degradation. Furthermore, depletion of HECTD3 leads to multipolar spindle formation. All these findings suggest that HECTD3 may facilitate cell cycle progression via regulating ubiquitination and degradation of Tara.  相似文献   

4.
Ischemia-reperfusion injury (IRI) is an inevitable and serious clinical problem in donations after heart death (DCD) liver transplantation. Excessive sterile inflammation plays a fateful role in liver IRI. Hypothermic oxygenated perfusion (HOPE), as an emerging organ preservation technology, has a better preservation effect than cold storage (CS) for reducing liver IRI, in which regulating inflammation is one of the main mechanisms. HECTD3, a new E3 ubiquitin ligase, and TRAF3 have an essential role in inflammation. However, little is known about HECTD3 and TRAF3 in HOPE-regulated liver IRI. Here, we aimed to investigate the effects of HOPE on liver IRI in a DCD rat model and explore the roles of HECTD3 and TRAF3 in its pathogenesis. We found that HOPE significantly improved liver damage, including hepatocyte and liver sinusoidal endothelial cell injury, and reduced DCD liver inflammation. Mechanistically, both the DOC and HECT domains of HECTD3 directly interacted with TRAF3, and the catalytic Cys (C832) in the HECT domain promoted the K63-linked polyubiquitination of TRAF3 at Lys138. Further, the ubiquitinated TRAF3 at Lys138 increased oxidative stress and activated the NF-κB inflammation pathway to induce liver IRI in BRL-3A cells under hypoxia/reoxygenation conditions. Finally, we confirmed that the expression of HECTD3 and TRAF3 was obviously increased in human DCD liver transplantation specimens. Overall, these findings demonstrated that HOPE can protect against DCD liver transplantation-induced-liver IRI by reducing inflammation via HECTD3-mediated TRAF3 K63-linked polyubiquitination. Therefore, HOPE regulating the HECTD3/TRAF3 pathway is a novel target for improving IRI in DCD liver transplantation.Subject terms: Molecular biology, Diseases  相似文献   

5.
Interferon regulatory factor 3 (IRF-3) plays a central role in inducing the expression of cellular antiviral genes, including the interferon-β gene, in response to Pattern Recognition Receptors. IRF-3 is targeted for proteasome-mediated degradation, which modulates the strength and duration of the innate immune responses that depend on it. We have found that caspase-8, which is activated by cytosolic RIG-I-dependent signaling, catalyzes an essential intermediate step in the ubiquitination and proteasome-mediated degradation of IRF-3. Mutation of a consensus cleavage site within IRF-3 generates a form that is not cleaved by caspase-8 and that is protected from ubiquitination and degradation. An in vitro assay confirms the direct action of caspase-8 cleavage on IRF-3. We also show that caspase-8-mediated cleavage of IRF-3 helps to modulate dsRNA-dependent gene induction.  相似文献   

6.
The US2 and US11 gene products of human cytomegalovirus promote viral evasion by hijacking the endoplasmic reticulum (ER)–associated degradation (ERAD) pathway. US2 and US11 initiate dislocation of newly translocated major histocompatibility complex class I (MHC I) from the ER to the cytosol for proteasome-mediated degradation, thereby decreasing cell surface MHC I. Despite being instrumental in elucidating the mammalian ERAD pathway, the responsible E3 ligase or ligases remain unknown. Using a functional small interfering RNA library screen, we now identify TRC8 (translocation in renal carcinoma, chromosome 8 gene), an ER-resident E3 ligase previously implicated as a hereditary kidney cancer gene, as required for US2-mediated MHC I ubiquitination. Depletion of TRC8 prevents MHC I ubiquitination and dislocation by US2 and restores cell surface MHC I. TRC8 forms an integral part of a novel multiprotein ER complex that contains MHC I, US2, and signal peptide peptidase. Our data show that the TRC8 E3 ligase is required for MHC I dislocation from the ER and identify a new complex associated with mammalian ERAD.  相似文献   

7.
8.
The adenovirus E1B 19K gene product is an inhibitor of apoptosis induced by tumor necrosis factor-alpha (TNF-alpha) during viral infection. We report that E1B 19K inhibited neither caspase-8 activation nor caspase-8-dependent Bid cleavage by TNF-alpha. Rather, TNF-alpha induced a tBid-dependent conformational change in Bax that allowed an interaction between E1B 19K and conformationally altered Bax, which caused inhibition of cytochrome c release and caspase-9 activation. E1B 19K expression interrupted caspase-3 processing, permitting cleavage to remove the p12 subunit but not the prodomain consistent with caspase-8 and not caspase-9 enzymatic activity. Thus, E1B 19K blocks TNF-alpha-mediated death signaling by inhibiting a specific form of Bax that interrupts caspase activation downstream of caspase-8 and upstream of caspase-9.  相似文献   

9.
Toll-like receptor 3 (TLR3) is a pattern-recognition receptor known to initiate an innate immune response when stimulated by double-stranded RNA (dsRNA). Components of TLR3 signaling, including TIR domain-containing adapter inducing IFN-α (TRIF), have been demonstrated to contribute to dsRNA-induced cell death through caspase-8 and receptor interacting protein (RIP)1 in various human cancer cells. We provide here a detailed analysis of the caspase-8 activating machinery triggered in response to Poly(I:C) dsRNA. Engagement of TLR3 by dsRNA in both type I and type II lung cancer cells induces the formation of an atypical caspase-8-containing complex that is devoid of classical death receptors of the TNFR superfamily, but instead is physically associated to TLR3. The recruitment of caspase-8 to TLR3 requires RIP1, and is negatively modulated by cellular inhibitor of apoptosis protein (cIAP)2-TNF receptor-associated factor (TRAF)2-TNFR-associated death domain (TRADD) ubiquitin ligase complex, which regulates RIP1 ubiquitination. Intriguingly, unlike Fas- or TRAILR-dependent death signaling, caspase-8 recruitment and activation within the TLR3 death-signaling complex appears not to be stringently dependent on Fas-associated with death domain (FADD). Our findings uncover a novel aspect of the molecular mechanisms involved during apoptosis induced by the innate immune receptor TLR3 in cancer cells.  相似文献   

10.
Chan CH  Li CF  Yang WL  Gao Y  Lee SW  Feng Z  Huang HY  Tsai KK  Flores LG  Shao Y  Hazle JD  Yu D  Wei W  Sarbassov D  Hung MC  Nakayama KI  Lin HK 《Cell》2012,149(5):1098-1111
Akt kinase plays a central role in cell growth, metabolism, and tumorigenesis. The TRAF6 E3 ligase orchestrates IGF-1-mediated Akt ubiquitination and activation. Here, we show that Akt ubiquitination is also induced by activation of ErbB receptors; unexpectedly, and in contrast to IGF-1 induced activation, the Skp2 SCF complex, not TRAF6, is a critical E3 ligase for ErbB-receptor-mediated Akt ubiquitination and membrane recruitment in response to EGF. Skp2 deficiency impairs Akt activation, Glut1 expression, glucose uptake and glycolysis, and breast cancer progression in various tumor models. Moreover, Skp2 overexpression correlates with Akt activation and breast cancer metastasis and serves as a marker for poor prognosis in Her2-positive patients. Finally, Skp2 silencing sensitizes Her2-overexpressing tumors to Herceptin treatment. Our study suggests that distinct E3 ligases are utilized by diverse growth factors for Akt activation and that targeting glycolysis sensitizes Her2-positive tumors to Herceptin treatment.  相似文献   

11.
12.
Expression of the hominoid-specific TBC1D3 oncoprotein enhances growth factor receptor signaling and subsequently promotes cellular proliferation and survival. Here we report that TBC1D3 is degraded in response to growth factor signaling, suggesting that TBC1D3 expression is regulated by a growth factor-driven negative feedback loop. To gain a better understanding of how TBC1D3 is regulated, we studied the effects of growth factor receptor signaling on TBC1D3 post-translational processing and turnover. Using a yeast two-hybrid screen, we identified CUL7, the scaffolding subunit of the CUL7 E3 ligase complex, as a TBC1D3-interacting protein. We show that CUL7 E3 ligase ubiquitinates TBC1D3 in response to serum stimulation. Moreover, TBC1D3 recruits F-box 8 (Fbw8), the substrate recognition domain of CUL7 E3 ligase, in pull-down experiments and in an in vitro assay. Importantly, alkaline phosphatase treatment of TBC1D3 suppresses its ability to recruit Fbw8, indicating that TBC1D3 phosphorylation is critical for its ubiquitination and degradation. We conclude that serum- and growth factor-stimulated TBC1D3 ubiquitination and degradation are regulated by its interaction with CUL7-Fbw8.  相似文献   

13.
Pruning that selectively eliminates unnecessary axons/dendrites is crucial for sculpting the nervous system during development. During Drosophila metamorphosis, dendrite arborization neurons, ddaCs, selectively prune their larval dendrites in response to the steroid hormone ecdysone, whereas mushroom body γ neurons specifically eliminate their axon branches within dorsal and medial lobes. However, it is unknown which E3 ligase directs these two modes of pruning. Here, we identified a conserved SCF E3 ubiquitin ligase that plays a critical role in pruning of both ddaC dendrites and mushroom body γ axons. The SCF E3 ligase consists of four core components Cullin1/Roc1a/SkpA/Slimb and promotes ddaC dendrite pruning downstream of EcR-B1 and Sox14, but independently of Mical. Moreover, we demonstrate that the Cullin1-based E3 ligase facilitates ddaC dendrite pruning primarily through inactivation of the InR/PI3K/TOR pathway. We show that the F-box protein Slimb forms a complex with Akt, an activator of the InR/PI3K/TOR pathway, and promotes Akt ubiquitination. Activation of the InR/PI3K/TOR pathway is sufficient to inhibit ddaC dendrite pruning. Thus, our findings provide a novel link between the E3 ligase and the InR/PI3K/TOR pathway during dendrite pruning.  相似文献   

14.
Programmed cell death (PCD) is an organized process by which organisms selectively remove cells according to developmental needs or in response to biotic or abiotic stress. Despite recent efforts to understand mechanisms by which cell death takes place in plants, several gaps remain in our understanding of the molecular elements involved. The tomato PCD suppressor Adi3 is an AGC kinase that shares functional homology with the mammalian inhibitor of apoptosis PKB. Regulation of PKB stability, cell localization, and activation state is achieved through post-translational modifications such as ubiquitination. In an effort to understand the regulation of Adi3 function, we studied its interaction with the E3 ubiquitin ligase AdBiL. Using in vitro ubiquitination assays we show that AdBiL is an active E3 ubiquitin ligase using the E2 ubiquitin ligase UBC8 to ubiquitinate Adi3. Adi3 is also degraded in a proteasome-dependent manner. Our data draws additional parallels between Adi3 and PKB to support the functional relationship between these two PCD regulators.  相似文献   

15.
Hex3 and Slx8 are Saccharomyces cerevisiae proteins with important functions in DNA damage control and maintenance of genomic stability. Both proteins have RING domains at their C termini. Such domains are common in ubiquitin and ubiquitin-like protein ligases (E3s), but little was known about the molecular functions of either protein. In this study we identified HEX3 as a high-copy suppressor of a temperature-sensitive small ubiquitin-related modifier (SUMO) protease mutant, ulp1ts, suggesting that it may affect cellular SUMO dynamics. Remarkably, even a complete deletion of ULP1 is strongly suppressed. Hex3 forms a heterodimer with Slx8. We found that the Hex3.Slx8 complex has a robust substrate-specific E3 ubiquitin ligase activity. In this E3 complex, Slx8 appears to bear the core ligase function, with Hex3 strongly enhancing its activity. Notably, SUMO attachment to a substrate stimulates its Hex3.Slx8-dependent ubiquitination, primarily through direct noncovalent interactions between SUMO and Hex3. Our data reveal a novel mechanism of substrate targeting in which sumoylation of a protein can help trigger its subsequent ubiquitination by recruiting a SUMO-binding ubiquitin ligase.  相似文献   

16.
Recent discoveries have unveiled the roles of a complicated network of E3 ubiquitin ligases in regulating cell migration machineries. The E3 ubiquitin ligases Smurf1 and Cul/BACURD ubiquitinate RhoA to regulate stress fiber formation and cell polarity, and ASB2α ubiquitinates filamins to modulate cytoskeletal stiffness, thus regulating cell spreading and cell migration. HACE1, XIAP, and Skp1-Cul1-F-box bind to Rac1 and cause its ubiquitination and degradation, thus suppressing lamellipodium protrusions, while PIAS3, a SUMO ligase, activates Rac1 to promote lamellipodium dynamics. Smurf1 also enhances Rac1 activation but it does not ubiquitinate Rac1. Both Smurf1 and HECTD1 regulate focal adhesion (FA) assembly and (or) disassembly through ubiquitinating the talin head domain and phosphatidylinositol 4 phosphate 5-kinase type I γ (PIPKIγ90), respectively. Thus, E3 ubiquitin ligases regulate stress fiber formation, cell polarity, lamellipodium protrusions, and FA dynamics through ubiquitinating the key proteins that control these processes.  相似文献   

17.
The inhibitor of apoptosis, cIAP2, contains a putative Ring finger motif at the C terminus. Using in vitro ubiquitination assays, we found that the Ring finger of cIAP2 alone possesses intrinsic ubiquitin ligase activity and promotes substrate-independent ubiquitination. It also promotes ubiquitination of caspases 3 and 7 but not caspase-1. The Ring fingers of c-Cbl and Apc11 failed to promote caspase-7 ubiquitination, suggesting that the Ring finger of cIAP2 itself is involved in substrate recognition.  相似文献   

18.
19.
Expression of the E3 ligase TRIM21 is increased in a broad spectrum of cancers; however, the functionally relevant molecular pathway targeted by TRIM21 overexpression remains largely unknown. Here, we show that TRIM21 directly interacts with and ubiquitinates CLASPIN, a mediator for ATR-dependent CHK1 activation. TRIM21-mediated K63-linked ubiquitination of CLASPIN counteracts the K6-linked ubiquitination of CLASPIN which is essential for its interaction with TIPIN and subsequent chromatin loading. We further show that overexpression of TRIM21, but not a TRIM21 catalytically inactive mutant, compromises CHK1 activation, leading to replication fork instability and tumorigenesis. Our findings demonstrate that TRIM21 suppresses CHK1 activation by preferentially targeting CLASPIN for K63-linked ubiquitination, providing a potential target for cancer therapy.  相似文献   

20.
Ariadne homolog 2 (ARIH2) is a key member of the RING-between-RING (RBR) E3 ligase family, which is characterized by an RBR domain involved in the polyubiquitination process. However, the molecular mechanism and biological function of ARIH2 in the pathogenesis of gastric cancer remain unclear. In this paper, we found that high ARIH2 expression is correlated with poor prognosis in gastric cancer patients and that ARIH2 can significantly promote the proliferation of gastric cancer cells. The effect of ARIH2 knockdown on colony formation and tumorigenesis of gastric cancer cells was also shown both in vivo and in vitro. Further mechanistic investigations revealed that ARIH2 interacts with p21 and induces p21 ubiquitination, and that the K48 residue of ubiquitin and the K161 residue of p21 play key roles in ARIH2-mediated p21 ubiquitination. We identified ARIH2 as an E3 ligase of p21 by an in vitro ubiquitination assay. In addition, ARIH2 knockdown induced DNA damage, and then induced cell apoptosis and regulated the chemosensitivity of gastric cancer cells after combined treatment with 5-fluorouracil. Generally, our results indicated that ARIH2 promotes the proliferation of gastric cancer cells and regulates p21 expression. These data demonstrate the need to further evaluate the potential therapeutic implications of ARIH2 in gastric cancer.Subject terms: Gastric cancer, Gastric cancer  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号