首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Control of cell cycle progression/exit and differentiation of neuronal precursors is of paramount importance during brain development. BM88 is a neuronal protein associated with terminal neuron-generating divisions in vivo and is implicated in mechanisms underlying neuronal differentiation. Here we have used mouse neuroblastoma Neuro 2a cells as an in vitro model of neuronal differentiation to dissect the functional properties of BM88 by implementing gain- and loss-of-function approaches. We demonstrate that stably transfected cells overexpressing BM88 acquire a neuronal phenotype in the absence of external stimuli, as judged by enhanced expression of neuronal markers and neurite outgrowth-inducing signaling molecules. In addition, cell cycle measurements involving cell growth assays, BrdUrd incorporation, and fluorescence-activated cell sorting analysis revealed that the BM88-transfected cells have a prolonged G(1) phase, most probably corresponding to cell cycle exit at the G(0) restriction point, as compared with controls. BM88 overexpression also results in increased levels of the cell cycle regulatory protein p53, and accumulation of the hypophosphorylated form of the retinoblastoma protein leading to cell cycle arrest, with concomitant decreased levels and, in many cells, cytoplasmic localization of cyclin D1. Conversely, BM88 gene silencing using RNA interference experiments resulted in acceleration of cell proliferation accompanied by impairment of retinoic acid-induced neuronal differentiation of Neuro 2a cells. Taken together, our results suggest that BM88 plays an essential role in regulating cell cycle exit and differentiation of Neuro 2a cells toward a neuronal phenotype and further support its involvement in the proliferation/differentiation transition of neural stem/progenitor cells during embryonic development.  相似文献   

2.
3.
4.
5.
6.
7.
The vitamin A metabolite all-trans retinoic acid (atRA) functions in nervous system development and regulates cell proliferation and differentiation. Neuroblastoma cells (SH-SY5Y and Neuro2a or N2A) exposed to atRA undergo growth inhibition and neuronal differentiation, both of which are preceded by an increase in Clmn mRNA. Treatment of N2A cells with atRA produces a reduction in phosphohistone 3 immunostaining and BrdU incorporation, both indicators of a reduction in cell proliferation. These effects are nearly eliminated in atRA-treated shClmn knockdown cells. Loss of Clmn in the mouse N2A cell line also results in a significant reduction of atRA-mediated neurite outgrowth, a response that can be rescued by reintroduction of the Clmn sequence. In contrast, ectopic overexpression of Clmn produces an increase in the cyclin dependent kinase inhibitor, p21(Cip1), a decrease in cyclin D1 protein and an increase in hypophosphorylated Rb, showing that Clmn participates in G(1)/S arrest. Clmn overexpression alone is sufficient to inhibit N2A cell proliferation, whereas both Clmn and atRA must be present to induce neurite outgrowth. This study shows that the atRA-responsive gene Clmn promotes exit from the cell cycle, a requisite event for neuronal differentiation.  相似文献   

8.
9.
The regulation of D-type cyclin-dependent kinase activity is critical for neuronal differentiation and apoptosis. We recently showed that cyclin D1 is sequestered in the cytoplasm and that its nuclear localization induces apoptosis in postmitotic primary neurons. Here, we further investigated the role of the subcellular localization of cyclin D1 in cell cycle withdrawal during the differentiation of N1E-115 neuroblastoma cells. We show that cyclin D1 became predominantly cytoplasmic after differentiation. Targeting cyclin D1 expression to the nucleus induced phosphorylation of Rb and cdk2 kinase activity. Furthermore, cyclin D1 nuclear localization promoted differentiated N1E-115 cells to reenter the cell cycle, a process that was inhibited by p16(INK4a), a specific inhibitor of D-type cyclin activity. These results indicate that cytoplasmic sequestration of cyclin D1 plays a role in neuronal cell cycle withdrawal, and suggests that the abrogation of machinery involved in monitoring aberrant nuclear cyclin D1 activity contributes to neuronal tumorigenesis.  相似文献   

10.
11.
12.
Regulation of MyoD function in the dividing myoblast   总被引:12,自引:0,他引:12  
Wei Q  Paterson BM 《FEBS letters》2001,490(3):171-178
Proliferating myoblasts express MyoD, yet no phenotypic markers are activated as long as mitogen levels are sufficient to keep the cells dividing. Depending upon mitogen levels, a decision is made in G1 that commits the myoblast to either continue to divide or to exit from the cell cycle and activate terminal differentiation. Ectopic expression of MyoD under the control of the RSV or CMV promoters causes 10T1/2 cells to rapidly exit the cell cycle and differentiate as single myocytes, even in growth medium, whereas expression of MyoD under the weaker SV40 promoter is compatible with proliferation. Co-expression of MyoD and cyclin D1, but not cyclins A, B, E or D3, blocks transactivation of a MyoD responsive reporter. Similarly, transfection of myoblasts with the cyclin-dependent kinase (cdk) inhibitors p16 and p21 supports some muscle-specific gene expression even in growth medium. Taken altogether, these results suggest cell cycle progression negatively regulates myocyte differentiation, possibly through a mechanism involving the D1 responsive cdks. We review evidence coupling growth status, the cell cycle and myogenesis. We describe a novel mitogen-sensitive mechanism that involves the cyclin D1-dependent direct interaction between the G1 cdks and MyoD in the dividing myoblast, which regulates MyoD function in a mitogen-sensitive manner.  相似文献   

13.
14.
15.
To understand the relationship between permanent cell cycle exit and differentiation the immortalized keratinocyte cell line, SIK and the squamous cell carcinoma, SCC9 were compared during differentiation induced by anchorage‐deprivation. The SIK cells when placed in suspension culture promptly lost almost all ability to reinitiate growth by 2 days concomitantly expressing the differentiation specific proteins, transglutaminase (TGK) and involucrin. These cells rapidly underwent G1 cell cycle arrest with complete disappearance of phosphorylated RB. In contrast SCC9 cells neither showed TGK expression nor increase in involucrin. They decreased their colony‐forming ability much more slowly, which coordinated well with a gradual decrease in phosphorylated RB, demonstrating the significant resistance to loss of colony‐forming ability and cell cycle exit. In accordance, cyclin D1, a positive regulator of cyclin‐dependent kinase (CDK) 4/6 which phosphorylates RB decreased drastically in anchorage deprived SIK but not in SCC9 cells. Endogenous cyclin D1 knockdown in SCC9 cells by siRNA enhanced loss of the colony‐forming ability during anchorage‐deprivation. Conversely enforced expression of cyclin D1 in SIK cells and in another immortalized keratinocyte cell line, HaCaT, partly prevented loss of their colony‐forming abilities. Cyclin D1 overexpression antagonized Keratin 10 expression in suspended HaCaT cells. The result demonstrates the importance of cyclin D1 down regulation for proper initiation of keratinocyte differentiation. J. Cell. Biochem. 106: 63–72, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

16.
Tissue homeostasis requires precise control of cell proliferation and arrest in response to environmental cues. In situation such as wound healing, injured cells are stimulated to divide, but as soon as confluence is reached proliferation must be blocked. Such reversible cell cycle exit occurs in G1, requires pRb family members, and is driven by p27Kip1-dependent Cdk inactivation. This implies that, while dividing, cells should simultaneously prepare the exit once mitosis is accomplished. For a long time, the decision to cycle or not was presumed to occur in G1, prior to the restriction point, beyond which the cells were bound to divide even in the absence of mitogens, before finally arresting after mitosis. However, more recent reports suggested that the commitment to cycle in response to serum occurs already in G2 phase and requires the Ras-dependent induction of cyclin D1, which promotes following G1/S transition. To test whether this hypothesis applies to arrest induced by contact inhibition, we used an in vitro wounding model where quiescent human dermal fibroblasts, stimulated to proliferate by mechanical injury, synchronously exit cell cycle after mitosis due to renewed confluence. We show that this exit is preceded by p27-dependent inhibition of cyclin A-Cdk1/2, cyclin D1 downregulation and reduced pre-mitotic pRb pocket protein phosphorylation. Over-expression of cyclin D1 but not p27 depletion reversed this phenotype and compromised confluence-driven cell cycle exit. Thus, a balance between cyclin D1 and p27 may provide sensitive responses to variations in proliferative cues operating throughout the cell cycle.  相似文献   

17.
The hearts of neonatal mice and adult zebrafish can regenerate after injury through proliferation of preexisting cardiomyocytes. However, adult mammals are not capable of cardiac regeneration because almost all cardiomyocytes exit their cell cycle. Exactly how the cell cycle exit is maintained and how many adult cardiomyocytes have the potential to reenter the cell cycle are unknown. The expression and activation levels of main cyclin-cyclin-dependent kinase (CDK) complexes are extremely low or undetectable at adult stages. The nuclear DNA content of almost all cardiomyocytes is 2C, indicating the cell cycle exit from G1-phase. Here, we induced expression of cyclin D1, which regulates the progression of G1-phase, only in differentiated cardiomyocytes of adult mice. In these cardiomyocytes, S-phase marker-positive cardiomyocytes and the expression of main cyclins and CDKs increased remarkably, although cyclin B1-CDK1 activation was inhibited in an ATM/ATR-independent manner. The phosphorylation pattern of CDK1 and expression pattern of Cdc25 subtypes suggested that a deficiency in the increase in Cdc25 (a and -b), which is required for M-phase entry, inhibited the cyclin B1-CDK1 activation. Finally, analysis of cell cycle distribution patterns showed that >40% of adult mouse cardiomyocytes reentered the cell cycle by the induction of cyclin D1. The cell cycle of these binucleated cardiomyocytes was arrested before M-phase, and many mononucleated cardiomyocytes entered endoreplication. These data indicate that silencing the cyclin D1 expression is necessary for the maintenance of the cell cycle exit and suggest a mechanism that involves inhibition of M-phase entry.  相似文献   

18.
19.
To understand how cellular differentiation is coupled to withdrawal from the cell cycle, we have focused on two negative regulators of the cell cycle, the MYC antagonist MAD1 and the cyclin-dependent kinase inhibitor p27(KIP1). Generation of Mad1/p27(KIP1) double-null mice revealed a number of synthetic effects between the null alleles of Mad1 and p27(KIP1), including embryonic lethality, increased proliferation, and impaired differentiation of granulocyte precursors. Furthermore, with granulocyte cell lines derived from the Mad1/p27(KIP1) double-null mice, we observed constitutive Myc expression and cyclin E-CDK2 kinase activity as well as impaired differentiation following treatment with an inducer of differentiation. By contrast, similar treatment of granulocytes from Mad1 or p27(KIP1) single-null mice resulted in differentiation accompanied by downregulation of both Myc expression and cyclin E-CDK2 kinase activity. In the double-null granulocytic cells, addition of a CDK2 inhibitor in the presence of differentiation inducer was sufficient to restore differentiation and reduce Myc levels. We conclude that Mad1 and p27(KIP1) operate, at least in part, by distinct mechanisms to downregulate CDK2 activity and Myc expression in order to promote cell cycle exit during differentiation.  相似文献   

20.
Mirk/Dyrk1B is a member of a conserved family of serine/threonine kinases which are activated by intramolecular tyrosine phosphorylation, and which mediate differentiation in different tissues-Mirk in skeletal muscle, Dyrk1A in the brain, etc. One role of Mirk in skeletal muscle differentiation is to block cycling myoblasts in the G0 quiescent state by modification of cell cycle regulators, while another role of Mirk is to limit apoptosis in fusing myoblasts. Amplification of the Mirk gene, upregulation of Mirk expression and/or constitutive activation of this kinase have been observed in several different types of cancer. If coupled with a stress condition such as serum starvation which induces a quiescent state, depletion of Mirk by RNA interference using either synthetic duplex RNAi's or pSilencer-encoded RNAi's have decreased colony formation of different cancer cell lines and enhanced apoptosis induced by chemotherapeutic drugs. Mirk is activated by phosphorylation by the stress-activated SAPK kinases MKK3 and MKK6. Our working hypothesis is that Mirk is activated by this pathway in response to various stresses, and then acts as a checkpoint kinase to arrest damaged tumor cells in a quiescent state and allow cellular repair. Pharmacological inhibition of Mirk may enhance the anti-tumor effect of chemotherapeutic drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号