首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.

Purpose

Amplification of the HER2/neu gene and/or overexpression of the corresponding protein have been identified in approximately 20% of invasive breast carcinomas. Assessment of HER2 expression in vivo would advance development of new HER2-targeted therapeutic agents and, potentially, facilitate choice of the proper treatment strategy offered to the individual patient. We present novel HER2-specific probes for in vivo evaluation of the receptor status by near-infrared (NIR) optical imaging.

Experimental Design

Affibody molecules were expressed, purified, and labeled with NIR-fluorescent dyes. The binding affinity and specificity of the obtained probe were tested in vitro. For in vivo validation, the relationship of the measured NIR signal and HER2 expression was characterized in four breast cancer xenograft models, expressing different levels of HER2. Accumulation of Affibody molecules in tumor tissue was further confirmed by ex vivo analysis.

Results

Affibody-DyLight conjugates showed high affinity to HER2 (KD = 3.66±0.26). No acute toxicity resulted from injection of the probes (up to 0.5 mg/kg) into mice. Pharmacokinetic studies revealed a relatively short (37.53±2.8 min) half-life of the tracer in blood. Fluorescence accumulation in HER2-positive BT-474 xenografts was evident as soon as a few minutes post injection and reached its maximum at 90 minutes. On the other hand, no signal retention was observed in HER2-negative MDA-MB-468 xenografts. Immunostaining of extracted tumor tissue confirmed penetration of the tracer into tumor tissue.

Conclusions

The results of our studies suggest that Affibody-DyLight-750 conjugate is a powerful tool to monitor HER2 status in a preclinical setting. Following clinical validation, it might provide complementary means for assessment of HER2 expression in breast cancer patients (assuming availability of proper NIR scanners) and/or be used to facilitate detection of HER2-positive metastatic lesions during NIR-assisted surgery.  相似文献   

2.
HER2 overexpression is associated with aggressive breast cancer with high recurrence rate and poor patient prognosis. Treatment of HER2 overexpressing patients with the HER2 targeting therapy trastuzumab results in acquired resistance within a year. The HER2/EGFR dual kinase inhibitor lapatinib was shown to inhibit some trastuzumab resistant breast cancer cell lines and is currently in clinical trials. Our group has found two new quinone compounds that show excellent inhibition of breast tumor cells expressing HER2 or the trastuzumab resistant HER2 oncogenic isoform, HER2Δ16. Compound 4 ((1R,2S,3S)-1,2,3,5,8-pentahydroxy-1,2,3,4-tetrahydroanthracene-9,10-dione) and compound 5 (5,8-dihydroxy-2,3-bis(hydroxymethyl)naphthalene-1,4-dione) showed sub-micromolar inhibition potency against these cell lines. These compounds also inhibit auto-phosphorylation of the Y1248 and Y1068 residues of HER2 and EGFR, respectively.  相似文献   

3.
Blocking the enzyme Fatty Acid Synthase (FASN) leads to apoptosis of HER2-positive breast carcinoma cells. The hypothesis is that blocking FASN, in combination with anti-HER2 signaling agents, would be an effective antitumor strategy in preclinical HER2+ breast cancer models of trastuzumab and lapatinib resistance. We developed and molecularly characterized in vitro HER2+ models of resistance to trastuzumab (SKTR), lapatinib (SKLR) and both (SKLTR). The cellular interactions of combining anti-FASN polyphenolic compounds (EGCG and the synthetic G28UCM) with anti-HER2 signaling drugs (trastuzumab plus pertuzumab and temsirolimus) were analyzed. Tumor growth inhibition after treatment with EGCG, pertuzumab, temsirolimus or the combination was evaluated in two in vivo orthoxenopatients: one derived from a HER2+ patient and another from a patient who relapsed on trastuzumab and lapatinib-based therapy. SKTR, SKLR and SKLTR showed hyperactivation of EGFR and p-ERK1/2 and PI3KCA mutations. Dual-resistant cells (SKLTR) also showed hyperactivation of HER4 and recovered levels of p-AKT compared with mono-resistant cells. mTOR, p-mTOR and FASN expression remained stable in SKTR, SKLR and SKLTR. In vitro, anti-FASN compounds plus pertuzumab showed synergistic interactions in lapatinib- and dual- resistant cells and improved the results of pertuzumab plus trastuzumab co-treatment. FASN inhibitors combined with temsirolimus displayed the strongest synergistic interactions in resistant cells. In vivo, both orthoxenopatients showed strong response to the antitumor activity of the combination of EGCG with pertuzumab or temsirolimus, without signs of toxicity. We showed that the simultaneous blockade of FASN and HER2 pathways is effective in cells and in breast cancer models refractory to anti-HER2 therapies.  相似文献   

4.
5.

Background

Human epidermal growth factor receptor 2 (HER2) has an important role in cancer aggressiveness and poor prognosis. HER2 has been used as a drug target for cancers. In particular, to effectively treat HER2-positive cancer, small molecule inhibitors were developed to target HER2 kinase. Knowing that curcumin has been used as food to inhibit cancer activity, this study evaluated the efficacy of natural curcumins and curcumin analogs as HER2 inhibitors using in vitro and in silico studies. The curcumin analogs considered in this study composed of 4 groups classified by their core structure, β-diketone, monoketone, pyrazole, and isoxazole.

Results

In the present study, both computational and experimental studies were performed. The specificity of curcumin analogs selected from the docked results was examined against human breast cancer cell lines. The screened curcumin compounds were then subjected to molecular dynamics simulation study. By modifying curcumin analogs, we found that protein-ligand affinity increases. The benzene ring with a hydroxyl group could enhance affinity by forming hydrophobic interactions and the hydrogen bond with the hydrophobic pocket. Hydroxyl, carbonyl or methoxy group also formed hydrogen bonds with residues in the adenine pocket and sugar pocket of HER2-TK. These modifications could suggest the new drug design for potentially effective HER2-TK inhibitors. Two outstanding compounds, bisdemethylcurcumin (AS-KTC006) and 3,5-bis((E)-3,4-dimethoxystyryl)isoxazole (AS-KTC021 ),were well oriented in the binding pocket almost in the simulation time, 30 ns. This evidence confirmed the results of cell-based assays and the docking studies. They possessed more distinguished interactions than known HER2-TK inhibitors, considering them as a promising drug in the near future.

Conclusions

The series of curcumin compounds were screened using a computational molecular docking and followed by human breast cancer cell lines assay. Both AS-KTC006 and AS-KTC021 could inhibit breast cancer cell lines though inhibiting of HER2-TK. The intermolecular interactions were confirmed by molecular dynamics simulation studies. This information would explore more understanding of curcuminoid structures and HER2-TK.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-261) contains supplementary material, which is available to authorized users.  相似文献   

6.
Human epidermal growth factor receptor 2 (HER2) is overexpressed in approximately 20% to 30% of breast cancers and various other types of cancers, which plays a vital role in the cancer progression. Monoclonal antibodies targeting Her2 are now used in the clinic to treat Her2 overexpression cancer patients. However, relapse or resistance is frequent with the current therapies. To generate a new treatment avenue against Her2, we immunized and selected a specific anti-Her2 single domain antibody C3 for further studies. The C3-Fc antibody drove antibody-dependent cell-mediated cytotoxicity against Her2-positive tumor cells in vitro and resulted in potent antitumor growth in vivo. These data suggest that the C3-Fc antibody may provide an alternative avenue for Her2-positive cancer therapy.  相似文献   

7.
Bone morphogenetic protein 9 (BMP9), a member of TGF-β superfamily, is reported to inhibit the growth and migration of prostate cancer, osteosarcoma and triple-negative MDA-MB-231 breast cancer cells. However, little is known about the effect of on the biological behaviors of HER2-positive SK-BR-3 breast cancer cells and the underlying mechanisms. This study aimed to investigate the effects of BMP9 on the proliferation and metastasis of SK-BR-3 cells with BMP9 over-expression or BMP9 down-regulated expression. Results indicated that exogenously expressed BMP9 inhibited the proliferation and metastasis of SK-BR-3 cells while decreased endogenous BMP9 expression in SK-BR-3 cells promoted the proliferation and migration of breast cancer cells in vitro and in vivo. In SK-BR-3 cells with BMP9 over-expression, the phosphorylation of HER2, ERK1/2 and AKT was markedly suppressed and the HER2 expression decreased at both mRNA and protein levels, while opposite results were observed in SK-BR-3 cells with BMP9 knock down. When the phosphorylation of ERK1/2 and PI3K/AKT was inhibited by PD98059 and LY294002, respectively, the decreased proliferation and invasion induced by BMP9 knock down were eliminated. These findings suggest that BMP9 can inhibit the proliferation and metastasis of SK-BR-3 cells via inactivating ERK1/2 and PI3K/AKT signaling pathways. Thus, BMP9 may serve as a useful agent in the treatment of HER-2 positive breast cancer.  相似文献   

8.
BackgroundHER2 is overexpressed and amplified in approximately 15% of invasive breast cancers, and is the molecular target and predictive marker of response to anti-HER2 agents. In a subset of these cases, heterogeneous distribution of HER2 gene amplification can be found, which creates clinically challenging scenarios. Currently, breast cancers with HER2 amplification/overexpression in just over 10% of cancer cells are considered HER2-positive for clinical purposes; however, it is unclear as to whether the HER2-negative components of such tumors would be driven by distinct genetic alterations. Here we sought to characterize the pathologic and genetic features of the HER2-positive and HER2-negative components of breast cancers with heterogeneous HER2 gene amplification and to define the repertoire of potential driver genetic alterations in the HER2-negative components of these cases.ResultsWe separately analyzed the HER2-negative and HER2-positive components of 12 HER2 heterogeneous breast cancers using gene copy number profiling and massively parallel sequencing, and identified potential driver genetic alterations restricted to the HER2-negative cells in each case. In vitro experiments provided functional evidence to suggest that BRF2 and DSN1 overexpression/amplification, and the HER2 I767M mutation may be alterations that compensate for the lack of HER2 amplification in the HER2-negative components of HER2 heterogeneous breast cancers.ConclusionsOur results indicate that even driver genetic alterations, such as HER2 gene amplification, can be heterogeneously distributed within a cancer, and that the HER2-negative components are likely driven by genetic alterations not present in the HER2-positive components, including BRF2 and DSN1 amplification and HER2 somatic mutations.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-015-0657-6) contains supplementary material, which is available to authorized users.  相似文献   

9.
Strategies for successful primary treatment of HER2-positive breast cancer include use of the HER2 inhibitors trastuzumab or lapatinib in combination with standard chemotherapy. While successful, many patients develop resistance to these HER2 inhibitors indicating an unmet need. Consequently, current research efforts are geared toward understanding mechanisms of resistance and the signaling modalities that regulate these mechanisms. We have undertaken a study to examine whether signaling molecules downstream of epidermal growth factor receptor, which often act as compensatory signaling outlets to circumvent HER2 inhibition, can be co-targeted to overcome resistance. We identified JNK signaling as a potential area of intervention and now show that inhibiting JNK using the pan-JNK inhibitor, SP600125, is effective in the HER2-positive, resistant JIMT-1 xenograft mammary tumor model. We also investigate potential combination strategies to bolster the effects of JNK inhibition and find that co-targeting of JNK and the protein kinase HUNK can prohibit tumor growth of resistant HER2-positive mammary tumors in vivo.  相似文献   

10.
Patients with ER/HER2-positive breast cancer have a poor prognosis and are less responsive to selective estrogen receptor modulators; this is presumably due to the crosstalk between ER and HER2. Fatty acid synthase (FASN) is essential for the survival and maintenance of the malignant phenotype of breast cancer cells. An intimate relationship exists between FASN, ER and HER2. We hypothesized that FASN may be the downstream effector underlying ER/HER2 crosstalk through the PI3K/AKT/mTOR pathway in ER/HER2-positive breast cancer. The present study implicated the PI3K/AKT/mTOR pathway in the regulation of FASN expression in ER/HER2-positive breast cancer cells and demonstrated that rapamycin, an mTOR inhibitor, inhibited FASN expression. Cerulenin, a FASN inhibitor, synergized with rapamycin to induce apoptosis and inhibit cell migration and tumorigenesis in ER/HER2-positive breast cancer cells. Our findings suggest that inhibiting the mTOR-FASN axis is a promising new strategy for treating ER/HER2-positive breast cancer.  相似文献   

11.

Background

Despite a typically good response to first-line combination chemotherapy, the prognosis for patients with advanced ovarian cancer remains poor because of acquired chemoresistance. The use of targeted therapies such as trastuzumab may potentially improve outcomes for patients with ovarian cancer. HER2 overexpression/amplification has been reported in ovarian cancer, but the exact percentage of HER2-positive tumors varies widely in the literature. In this study, HER2 gene status was evaluated in a large, multicentric series of 320 patients with advanced ovarian cancer, including 243 patients enrolled in a multicenter prospective clinical trial of paclitaxel/carboplatin-based chemotherapy.

Methodology/Principal Findings

The HER2 status of primary tumors and metastases was evaluated by both immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) analysis of paraffin-embedded tissue on conventional slides. The prognostic impact of HER2 expression was analyzed. HER2 gene was overexpressed and amplified in 6.6% of analyzed tumors. Despite frequent intratumoral heterogeneity, no statistically significant difference was detected between primary tumors and corresponding metastases.

Conclusions/Significance

Our results show that the decision algorithm usually used in breast cancer (IHC as a screening test, with equivocal results confirmed by FISH) is appropriate in ovarian cancer. In contrast to previous series, HER2-positive status did not influence outcome in the present study, possibly due to the fact that patients in our study received paclitaxel/carboplatin-based chemotherapy. This raises the question of whether HER2 status and paclitaxel sensitively are linked.  相似文献   

12.
Six acylated anthocyanins have been isolated from the flowers of Ipomoea congesta R. Brown. One has been previously described as an acylated peonidin derivative. Three others are isomers, derived from peonidin-3-(caffeylsophoroside)-5-glucoside. The fifth was characterised as peonidin-3-(p-coumarylcaffeylsophoroside)-5-glucoside and the last as peonidin-3-(coumarylsophoroside)-5-glucoside. It is noteworthy that the anthocyanins found in this species have the same glycosidic pattern, 3-sophoroside-5-glucoside, as those reported for the cyanidin derivatives in Ipomoea cairica flowers. Acylated anthocyanin occurrence in Tubiflorae order is of chemotaxonomical value.  相似文献   

13.
14.
15.
Breast cancer is the second most common cancer diagnosed worldwide. Human epidermal growth factor receptor 2 (HER2)-positive breast cancer represents about 20% to 30% of all breast cancers. Trastuzumab is used in the treatment of HER2-positive breast cancer. MicroRNA-21 (miR-21) is an oncomiR that acts by inhibiting many tumor-suppressor genes. We analyzed the relative expression levels of serum miR-21 in 20 HER2-positive metastatic breast cancer patients before and after 3 months of treatment with trastuzumab. miR-21 levels decreased with a high significant difference after trastuzumab therapy (P = 0.001). Although miR-21 expression levels were lower in responders than in nonresponders, the difference was not statistically significant ( P = 0.6). Our results demonstrated a significant negative correlation between its basal expression, expression levels after treatment, and time to progression ( P = 0.03 and 0.01, respectively). These results make miR-21 a potential prognostic factor for HER2-positive metastatic breast cancer patients. Additionally, it can be an interesting potential target in therapy using antisense oligonucleotides for miR-21.  相似文献   

16.
BackgroundMetaplastic breast cancer (MBC) is a rare and aggressive subtype of breast. However, the effect of molecular subtype on treatment and prognosis of MBC remains unclear.Patients and methodsThe Surveillance, Epidemiology, and End Results database was used to analyze patients with MBC between 2010 and 2016. Molecular subtype was stratified to TN group (ER and PR-/HER2-), HER2 group (ER and PR-/HER2+, ER/PR+ and HER2+), and HR group (ER/PR+ and HER2-). The breast cancer-specific survival (BCSS) differences were estimated using multivariate Cox regression model and Kaplan-Meier curves.ResultsWe included 1665 patients with median follow-up time of 27 months (range 0–83 months). 1154 (69.3%), 65 (3.9%), and 446 (26.8%) patients presented in TN group, HER2 group, and HR group, respectively. On multivariate Cox analysis, the prognosis was related to age, tumor size, regional node metastasis, and surgery. Molecular subtype remained no impact on BCSS. Radiotherapy (RT) was associated with better prognosis. Patients cannot benefit from chemotherapy. In Kaplan-Meier curve, triple-negative (P = 0.047) and HR-positive (P = 0.006) patients receiving RT had a superior BCSS than that not RT. HER2-positive patients cannot benefit from RT. However, adjusted Kaplan-Meier survival model showed that triple-negative (P = 0.019) but not HER2-positive (P = 0.575) or HR-positive (P = 0.574) patients receiving RT had a superior BCSS than that not RT.ConclusionsMolecular subtype is not associated with the better prognosis of MBC. Patients could benefit from RT. However, triple-negative but not HR-positive or HER2-positive patients have superior survival after receiving RT.  相似文献   

17.

Background

25% of breast cancer patients suffer from aggressive HER2-positive tumours that are characterised by overexpression of the HER2 protein or by its increased tyrosine kinase activity. Herceptin is a major drug used to treat HER2 positive breast cancer. Understanding the molecular events that occur when breast cancer cells are exposed to Herceptin is therefore of significant importance. Dual specificity phosphatases (DUSPs) are central regulators of cell signalling that function downstream of HER2, but their role in the cellular response to Herceptin is mostly unknown. This study aims to model the initial effects of Herceptin exposure on DUSPs in HER2-positive breast cancer cells using Boolean modelling.

Results

We experimentally measured expression time courses of 21 different DUSPs between 0 and 24 h following Herceptin treatment of human MDA-MB-453 HER2-positive breast cancer cells. We clustered these time courses into patterns of similar dynamics over time. In parallel, we built a series of Boolean models representing the known regulatory mechanisms of DUSPs and then demonstrated that the dynamics predicted by the models is in agreement with the experimental data. Furthermore, we used the models to predict regulatory mechanisms of DUSPs, where these mechanisms were partially known.

Conclusions

Boolean modelling is a powerful technique to investigate and understand signalling pathways. We obtained an understanding of different regulatory pathways in breast cancer and new insights on how these signalling pathways are activated. This method can be generalized to other drugs and longer time courses to better understand how resistance to drugs develops in cancer cells over time.
  相似文献   

18.

Background

Recombinant monoclonal antibodies have emerged as important tools for cancer therapy. Despite the promise shown by antibody-based therapies, the large molecular size of antibodies limits their ability to efficiently penetrate solid tumors and precludes efficient crossing of the blood-brain-barrier into the central nervous system (CNS). Consequently, poorly vascularized solid tumors and CNS metastases cannot be effectively treated by intravenously-injected antibodies. The inherent tumor-tropic properties of human neural stem cells (NSCs) can potentially be harnessed to overcome these obstacles and significantly improve cancer immunotherapy. Intravenously-delivered NSCs preferentially migrate to primary and metastatic tumor sites within and outside the CNS. Therefore, we hypothesized that NSCs could serve as an ideal cellular delivery platform for targeting antibodies to malignant tumors.

Methods and Findings

As proof-of-concept, we selected Herceptin™ (trastuzumab), a monoclonal antibody widely used to treat HER2-overexpressing breast cancer. HER2 overexpression in breast cancer is highly correlated with CNS metastases, which are inaccessible to trastuzumab therapy. Therefore, NSC-mediated delivery of trastuzumab may improve its therapeutic efficacy. Here we report, for the first time, that human NSCs can be genetically modified to secrete anti-HER2 immunoglobulin molecules. These NSC-secreted antibodies assemble properly, possess tumor cell-binding affinity and specificity, and can effectively inhibit the proliferation of HER2-overexpressing breast cancer cells in vitro. We also demonstrate that immunoglobulin-secreting NSCs exhibit preferential tropism to tumor cells in vivo, and can deliver antibodies to human breast cancer xenografts in mice.

Conclusions

Taken together, these results suggest that NSCs modified to secrete HER2-targeting antibodies constitute a promising novel platform for targeted cancer immunotherapy. Specifically, this NSC-mediated antibody delivery system has the potential to significantly improve clinical outcome for patients with HER2-overexpressing breast cancer.  相似文献   

19.

Background

HER2 and TOP2A gene status are assessed for diagnostic and research purposes in breast cancer with fluorescence in situ hybridization (FISH). However, FISH probes do not target only the annotated gene, while chromosome 17 (chr17) is among the most unstable chromosomes in breast cancer. Here we asked whether the status of specifically targeted genes on chr17 might help in refining prognosis of early high-risk breast cancer patients.

Methods

Copy numbers (CN) for 14 genes on chr17, 4 of which were within and 10 outside the core HER2 amplicon (HER2- and non-HER2-genes, respectively) were assessed with qPCR in 485 paraffin-embedded tumor tissue samples from breast cancer patients treated with adjuvant chemotherapy in the frame of two randomized phase III trials.

Principal Findings

HER2-genes CN strongly correlated to each other (Spearman’s rho >0.6) and were concordant with FISH HER2 status (Kappa 0.6697 for ERBB2 CN). TOP2A CN were not concordant with TOP2A FISH status (Kappa 0.1154). CN hierarchical clustering revealed distinct patterns of gains, losses and complex alterations in HER2- and non-HER2-genes associated with IHC4 breast cancer subtypes. Upon multivariate analysis, non-HER2-gene gains independently predicted for shorter disease-free survival (DFS) and overall survival (OS) in patients with triple-negative cancer, as compared to luminal and HER2-positive tumors (interaction p = 0.007 for DFS and p = 0.011 for OS). Similarly, non-HER2-gene gains were associated with worse prognosis in patients who had undergone breast-conserving surgery as compared to modified radical mastectomy (p = 0.004 for both DFS and OS). Non-HER2-gene losses were unfavorable prognosticators in patients with 1–3 metastatic nodes, as compared to those with 4 or more nodes (p = 0.017 for DFS and p = 0.001 for OS).

Conclusions

TOP2A FISH and qPCR may not identify the same pathology on chr17q. Non-HER2 chr17 CN patterns may further predict outcome in breast cancer patients with known favorable and unfavorable prognosis.  相似文献   

20.

Background

Although the prognosis of patients with small (≤1cm) tumors is generally favorable, emerging data suggests that biological behavior varies between intrinsic subtypes in such patients. Furthermore, it still remains unclear whether HER2-positive pT1a-bN0M0 patients could benefit from adjuvant trastuzumab. For further evaluation, we sought to conduct a meta-analysis so as to get a better understanding of the prognosis for HER2-positive pT1a-bN0M0 patients and their survival benefit from adjuvant trastuzumab, accordingly, offering the implications for current practice.

Methods

The PubMed database, the online proceedings of the American Society of Clinical Oncology (ASCO) Annual Meetings, the online proceedings of the San Antonio Breast Cancer Symposium, and the CD proceedings of the International St. Gallen Breast Cancer Conference were searched for all relevant studies published before September 2012. Relative risks (RRs) were used to compare the prognosis of different intrinsic subtypes for pT1a-bN0M0 breast cancer. Analyses were also performed to estimate the association between adjuvant trastuzumab and various survival outcomes.

Results

With eight eligible studies identified, this meta-analysis demonstrated a deleterious effect of HER2+ phenotype on disease-free survival (DFS; RR = 3.677, 95% CI 2.606–5.189, p <0.001) and distant disease-free survival (DDFS; RR = 3.824, 95% CI 2.249–6.501, p<0.001) as compared to HR+/HER2- subgroup. However, significant difference failed to be achieved in terms of any endpoint between HER2+ and triple negative breast cancer (TNBC). Besides, a marked improvement in DFS was observed with the addition of trastuzumab for HER2-positive pT1a-bN0M0 patients (RR = 0.323, 95% CI 0.191–0.547, p<0.001).

Conclusion

This meta-analysis clarifies that intrinsic subtypes might be a reliable marker to predict the prognosis in pT1a-bN0M0 breast cancer. Besides, even for such early stage HER2-positive patients, adjuvant trastuzumab might bring significant survival benefit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号