首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Direct evaluation of macroalgal removal by herbivorous coral reef fishes   总被引:5,自引:5,他引:0  
Few studies have examined the relative functional impacts of individual herbivorous fish species on coral reef ecosystem processes in the Indo-Pacific. This study assessed the potential grazing impact of individual species within an inshore herbivorous reef fish assemblage on the central Great Barrier Reef (GBR), by determining which fish species were able to remove particular macroalgal species. Transplanted multiple-choice algal assays and remote stationary underwater digital video cameras were used to quantify the impact of local herbivorous reef fish species on 12 species of macroalgae. Macroalgal removal by the fishes was rapid. Within 3 h of exposure to herbivorous reef fishes there was significant evidence of intense grazing. After 12 h of exposure, 10 of the 12 macroalgal species had decreased to less than 15% of their original mass. Chlorodesmis fastigiata (Chlorophyta) and Galaxaura sp. (Rhodophyta) showed significantly less susceptibility to herbivorous reef fish grazing than all other macroalgae, even after 24 h exposure. Six herbivorous and/or nominally herbivorous reef fish species were identified as the dominant grazers of macroalgae: Siganus doliatus, Siganus canaliculatus, Chlorurus microrhinos, Hipposcarus longiceps, Scarus rivulatus and Pomacanthus sexstriatus. The siganid S. doliatus fed heavily on Hypnea sp., while S. canaliculatus fed intensively on Sargassum sp. Variation in macroalgal susceptibility was not clearly correlated with morphological and/or chemical defenses that have been previously suggested as deterrents against herbivory. Nevertheless, the results stress the potential importance of individual herbivorous reef fish species in removing macroalgae from coral reefs.  相似文献   

2.
Herbivorous fishes are a critical functional group on coral reefs, and there is a clear need to understand the role and relative importance of individual species in reef processes. While numerous studies have quantified the roles of parrotfishes and surgeonfishes on coral reefs, the rabbitfishes (f. Siganidae) have been largely overlooked. Consequently, they are typically viewed as a uniform group of grazing or browsing fishes. Here, we quantify the diet and distribution of rabbitfish assemblages on six reefs spanning the continental shelf in the northern Great Barrier Reef. Our results revealed marked variation in the diet and distribution of rabbitfish species. Analysis of stomach contents identified four distinct groups: browsers of leathery brown macroalgae (Siganus canaliculatus, S. javus), croppers of red and green macroalgae (S. argenteus, S. corallinus, S. doliatus, S. spinus) and mixed feeders of diverse algal material, cyanobacteria, detritus and sediment (S. lineatus, S. punctatissimus, S. punctatus, S. vulpinus). Surprisingly, the diet of the fourth group (S. puellus) contained very little algal material (22.5 %) and was instead dominated by sponges (69.1 %). Together with this variation in diet, the distribution of rabbitfishes displayed clear cross-shelf variation. Biomass was greatest on inner-shelf reefs (112.7 ± 18.2 kg.ha?1), decreasing markedly on mid- (37.8 ± 4.6 kg.ha?1) and outer-shelf reefs (9.7 ± 2.2 kg.ha?1). This pattern was largely driven by the browsing S. canaliculatus that accounted for 50 % of the biomass on inner-shelf reefs, but was absent in mid- and outer-shelf reefs. Mixed feeders, although primarily restricted to the reef slope and back reef habitats, also decreased in abundance and biomass from inshore to offshore, while algal cropping taxa were the dominant group on mid-shelf reefs. These results clearly demonstrate the extent to which diet and distribution vary within the Siganidae and emphasise the importance of examining function on a species-by-species basis.  相似文献   

3.
Adult rabbitfishes (Siganidae) differ from most other herbivorous coral reef fishes by forming stable pair bonds throughout their adult lives. However, little is known about the early life stages of rabbitfishes, and no quantitative evidence regarding the ontogeny of pairing behaviour exists to date. This study describes the abundance, distribution and ontogeny of social associations in juvenile rabbitfishes on the mid-shelf reefs around Lizard Island, Great Barrier Reef, Australia. Using underwater visual censuses, we surveyed an area of 5728?m2 across three distinct habitat types, revealing that the abundance of juveniles varies significantly among species, size class and exposure level. Furthermore, we demonstrate a pronounced ontogenetic shift in the social associations of juveniles of Siganus doliatus and Siganus corallinus, changing from primarily solitary individuals in the smallest size class (<50?mm) to predominantly paired individuals in the larger size classes (50–100?mm and 100–150?mm). In this context, we report the presence of several mixed-species pairs of rabbitfishes, providing the first evidence for this behaviour within the family. This supports previous research, which posits that there are strong ecological drivers, rather than a solely reproductive basis, for pairing behaviour in rabbitfishes. Based on our results, we suggest that further exploration of the ecology of early life stages of herbivorous reef fishes will increase our knowledge about ecological processes on coral reefs.  相似文献   

4.
This study investigated the basis of pair formation in the abundant herbivorous rabbitfish Siganus doliatus on Orpheus Island, Great Barrier Reef. Pair formation was the most common social system in S. doliatus, with 67·4% of all individuals occurring in pairs. Pairs were stable (i.e. individuals remained with the same partner throughout the study) and pair members were found within 5 m of each other 82·9% of the time. Of the examined pairs, 25% were homosexual resulting in a proportion of heterosexual pairs (75%) that was significantly lower than expected if pairs were formed solely for reproductive reasons. Therefore, although reproduction appears to be the main driver of pair formation in S. doliatus, other factors are likely to influence this behaviour. The high density of individuals on the reef crest (5·7 ± 0·9 individuals 200 m?2; mean ± s.e .) and extensively overlapping home ranges of pairs indicated that the defence of territories plays no role in pair formation. Instead, it appears that pair formation in S. doliatus is driven, in part, by other, non‐reproductive, ecological factors. It is suggested that pair formation allows for increased vigilance against predation and enables S. doliatus to execute a novel feeding behaviour.  相似文献   

5.
Disturbance of competitive‐dominant plant and algae canopies often lead to increased diversity of the assemblage. Kelp forests, particularly those of temperate Western Australia, are habitats with high alpha diversity. This study investigated the roles of broad‐scale canopy loss and local scale reef topography on structuring the kelp‐dominated macroalgal forests in Western Australia. Eighteen 314 m2 circular areas were cleared of their Ecklonia radiata canopy and eighteen controls were established across three locations. The patterns of macroalgal recolonisation in replicate clearances were observed over a 34 month period. Macroalgal species richness initially increased after canopy removal with a turf of filamentous and foliose macroalgae dominating cleared areas for up to seven months. A dense Sargassum canopy dominated cleared areas from 11 to 22 months. By 34 months, partial recovery of the kelp canopy into cleared areas had occurred. Some cleared areas did not follow this trajectory but remained dominated by turfing, foliose and filamentous algae. As kelp canopies developed, the initial high species diversity declined but still remained elevated relative to undisturbed controls, even after 34 months. More complex reef topography was associated with greater variability in the algal assemblage between replicate quadrats suggesting colonising algae had a greater choice of microhabitats available to them on topographically complex reefs. Shading by canopies of either Sargassum spp. and E. radiata are proposed to highly influence the abundance of algae through competitive exclusion that is relaxed by disturbance of the canopy. Disturbance of the canopy in E. radiata kelp forests created a mosaic of different patch types (turf, Sargassum‐dominated, kelp‐dominated). These patch types were both transient and stable over the 34 months of this study, and are a potential contemporary process that maintains high species diversity in temperate kelp‐dominated reefs.  相似文献   

6.
Niche theory predicts that coexisting species minimise competition by evolving morphological or behavioural specialisations that allow them to spread out along resource axes such as space, diet and temporal activity. These specialisations define how a species interacts with its environment and, by extension, determine its functional role. Here, we examine the feeding niche of three species of coral reef-dwelling rabbitfishes (Siganidae, Siganus). By comparing aspects of their feeding behaviour (bite location, bite rate, foraging distance) with that of representative species from two other abundant herbivorous fish families, the parrotfishes (Labridae, Scarus) and surgeonfishes (Acanthuridae, Acanthurus), we examine whether rabbitfishes have a feeding niche distinct from other members of the herbivore guild. Measurements of the penetration of the fishes’ snouts and bodies into reef concavities when feeding revealed that rabbitfish fed to a greater degree from reef crevices and interstices than other herbivores. There was just a 40 % overlap in the penetration-depth niche between rabbitfish and surgeonfish and a 45 % overlap between rabbitfish and parrotfish, compared with the almost complete niche overlap (95 %) recorded for parrotfish and surgeonfish along this spatial niche axis. Aspects of the morphology of rabbitfish which may contribute to this niche segregation include a comparatively longer, narrower snout and narrower head. Our results suggest that sympatric coexistence of rabbitfish and other reef herbivores is facilitated by segregation along a spatial (and potentially dietary) axis. This segregation results in a unique functional role for rabbitfishes among roving herbivores that of “crevice-browser”: a group that specifically feeds on crevice-dwelling algal or benthic organisms. This functional trait may have implications for reef ecosystem processes in terms of controlling the successional development of crevice-based algal communities, reducing their potential to trigger macroalgal outbreaks.  相似文献   

7.

Increasing ocean temperatures associated with ongoing climate change have resulted in regional reductions in the cover of live coral and increasing concerns that coral reefs will be overgrown by macroalgae. The likelihood of macroalgal overgrowth will, however, depend on the thermal sensitivities of the macroalgae themselves. We exposed recently settled propagules of the common canopy-forming macroalga Sargassum swartzii and adult thalli of three species of Sargassum (S. swatzii, S. cristaefolium, S. polycystum) to three experimental temperatures: ambient, + 2 °C, and + 3.5 °C, reflective of summer minimum, mean, and maximum temperatures for the region. Growth and survival of Sargassum swartzii propagules were assessed over 48 days, and the growth, physical toughness, elemental composition, and susceptibility to herbivory of adult thalli were assessed after short-term exposure (2-weeks) to experimental temperatures. Growth and survival of S. swartzii propagules were reduced by 43% and 84%, respectively, when cultured at the elevated (+ 3.5 °C) temperature compared to ambient temperature. Similarly, elevated temperature resulted in a 17–49% decline in the growth of adult Sargassum thalli relative to controls. Susceptability of S. swartzii and S. cristaefolium to herbivory (i.e. mass removed by herbivores) was 50% less for thalli cultured at elevated (+ 3.5 °C) compared to ambient temperature, but this pattern was not related to changes in the physical or chemical properties of the thalli as a result of elevated temperature. The negative effects of elevated temperatures on the growth and survival of both Sargassum propagules and adult thalli will likely restrict the capacity of Sargassum, and potentially other macroalgae, to establish in new areas, and may also threaten the persistence of existing macroalgal meadows under future ocean temperatures. The thermal sensitivities of tropical Sargassum, together with those of corals, suggest ongoing ocean warming may lead to novel reef ecosystems that are low in both coral cover and macroalgal cover.

  相似文献   

8.

The majority of our understanding of the effects of climate change on coral reef fishes are currently based on studies of small-bodied species such as damselfishes. By contrast, we know little about the potential impacts of ocean warming on larger species of herbivorous and detritivorous reef fish, despite them being a critical functional group and an essential source of food protein for millions of people. In addition, we know little of the role of habitat in determining species’ thermal sensitivity and the legitimacy of extrapolating thermal performance across closely-related species from different habitat types. Here we test the effect of exposure to increased water temperature during juvenile development on key physiological and behavioral traits of two species of rabbitfish typically associated with different habitats: Siganus doliatus (reef-associated) and S. lineatus (estuarine). Wild-caught juveniles were reared for 14 weeks at temperatures representing present-day ambient conditions (28.0 °C), late-summer ambient conditions (30.0 °C), or those projected on reefs under future global warming scenarios (31.5 °C). We then measured the somatic (growth, condition, immune response) and behavioral (feeding rate, latency to feed and activity level) traits of individuals within each treatment to determine the sensitivity of each species to elevated water temperatures. Overall, both species showed comparatively robust levels of thermal tolerance, based on previously-documented responses of small-bodied reef fishes. However, two very different patterns emerged. The reef-associated S. doliatus showed a greater physiological response to temperature, with negative effects on hepatosomatic condition and immune function observed in individuals exposed to the 31.5 °C treatment. By contrast, there were no negative physiological effects of temperature observed in S. lineatus and instead we recorded behavioral changes, with individuals at 30 °C and 31.5 °C displaying altered feeding behavior (increased feeding rate and decreased latency to feed). These distinct responses observed between congeners are likely due to their evolutionary history and flag the potential inaccuracies that could arise from extrapolating effects of ocean warming across even closely-related species adapted to different habitats.

  相似文献   

9.
The importance of annual recruitment to the structure of adult stands of Sargassum was determined for a mixed species Sargassum bed at Rottnest Island, Western Australia. The morphologically similar species Sargassum spinuligerum Sonder, S. distichum Sonder, and S. podacanthum Sonder grew together in the shallow subtidal (6 m). Positive species determinations were only possible when thalli were reproductive, so recruits, bases, and vegetative annuals for all species were grouped together. Densities of recruits, perennial bases, vegetative annuals, and reproductive annuals were determined at monthly intervals from 20 randomly placed 0.25-m?2 quadrats. Recruitment and mortality for recruits and adults were further determined at three monthly intervals from 6-×-1-m?2 permanent quadrats. The density of adults varied little with season (between 32 and 58 m?2). Growth of annuals was initiated in April, thalli became reproductive by late August–early September, and senescence occurred in December–January. Density of recruits was highly variable (1.6–210 individuals-m?2) and peaked seasonally during late summer (January–February) and then declined rapidly. Adults showed a complete turnover of thalli in the bed over 25–27 months. Adult mortality was compensated by annual recruitment from propagules (43%) and vegetative regeneration from fragments of holdfasts left on the reef (57%). A seasonal pattern in survivorship was observed for adults that grew from recruits with higher initial numbers and lower mortalities for August and November cohorts. Little seasonally was observed in survivorship of adults that grew vegetatively from remnant crusts. Although initial cohort sizes were smaller for adults grown from recruits than from remnant crusts, mortality was lower, resulting in similar contributions to adult density from both recruits and remnant crusts. Recruitment from propagules and vegetative regeneration played an important role in buffering the adult stand from high rates of mortality and reducing seasonal variation in adult density and contributed to the persistence and seasonal structure of Sargassum beds at Rottnest Island.  相似文献   

10.
The economic value of ecosystem services of vegetated habitats (seagrass and macroalgal beds) has been estimated to be among the highest of the various ecosystems on earth. However, fish production has not been included in the evaluations due to the difficulty of quantitative estimation of fish production in the field. In the present study, annual production and economic value of wild juvenile black rockfish, Sebastes cheni, a dominant fish species in seagrass and macroalgal beds in the central Seto Inland Sea were estimated. Juvenile S. cheni migrated into vegetated habitats at about 20 mm total length (TL) and grew up to about 60 mm TL by late May. Juvenile abundance was highest in April (2007) or March (2008). Eight cohorts with the same extrusion period (each cohort covering a 10-day period) were identified using otolith daily increments. The annual estimates of S. cheni juvenile production were 13,080 g ha−1 year−1 in 2007 and 18,360 g −1 year−1 in 2008. Based on the unit price of artificially raised S. cheni juveniles, the economic value of the annual wild juvenile production was converted to 654,000 JPY (Japanese yen: 100 JPY = ca. 1 USD) ha−1 year−1 for 2007 and 918,000 JPY ha−1 year−1 for 2008. Analyses of stomach contents and stable isotope (δ13C or δ15N) showed that juvenile S. cheni were highly dependent on copepods. The planktonic trophic pathway originating from phytoplankton supports the majority of the juvenile black rockfish production during the post-migration period (20–60 mm TL) in the seagrass and macroalgal beds through the production of copepod zooplankton. The total economic value of the ecosystem services of the vegetated habitat is suggested to be much higher than estimates in previous studies if the provisioning and regulating services which originate from fish production were included in the estimates.  相似文献   

11.
Sargassum muticum was first observed in Scandinavia in Limfjorden (Denmark) in 1984, where it is now the most abundant and conspicuous macroalga. Despite the ecological importance of Sargassum, few studies have described seasonal patterns within Scandinavian Sargassum beds. We quantified the dynamics of macroalgae among years and seasons along a depth transect through a typical Sargassum bed in Limfjorden. The annual investigations (summer transects 1989–1999) showed a gradual increase in the dominance of Sargassum, especially at the 2–4-m depth interval. Significant seasonal dynamics in macroalgal abundance and assemblage structure were observed in this depth interval; the mean cover of Sargassum varied from ca. 5% (autumn and winter) to 25% (mid-summer). In comparison, encrusting algae had high and relatively stable covers throughout the year (ca. 20%). Other perennial macroalgae had low mean covers (<2%) characterized by a few patches of higher abundances. Except from a spring bloom, filamentous algae had low covers throughout the year. Within this relatively uniform bed, Sargassum abundance was positively related to boulders >10 cm in diameter and species richness was negatively correlated to depth and stones <10 cm in diameter, and non-correlated to other algal form-groups or grazer densities. Thus, in Limfjorden, the distribution of Sargassum is determined by large- (>6 m) and small-scale (<1 m) depth differences where low light limits Sargassum at depth, physical disturbance and sediment stress limits Sargasum in shallow waters, and the presence of stable boulder substratum facilitate Sargassum. Competition for space from other macroalgae and herbivory are probably of minor importance.  相似文献   

12.
For 15 months, the composition and abundance of drift vegetation were determined from a plantdominated fringing reef at Galeta Point, Caribbean Panama. Five nets located downstream of the reef platform continuously sampled 1.0–1.3 ha of reef flat which included 137–202 m of fore reef. Time series and multiple correlation analysis were done to evaluate the dependence of drift biomass on selected physical and biological factors. Export and import rates and turnover times were derived and compared between the dominant species. Floating leaves, branches, and seeds of higher plants were the major components of imported drift with 52% of the dry weight mass, followed by algae and seagrass each with 19%, the water hyacinth Eichhornia with 2%, and floating tar with 8%. Exported biomass from the reef platform was higher in the dry-season (late November–March) than in the wet-season (April-early November). Within the 1.0–1.3 ha sampling area, export estimates ranged from 37–294 kg mo-1 for the seagrass Thalassia, 3–171 kg mo-1 for the alga Laurencia, and 3–74 kg mo-1 for the alga Acanthophora. Multiple correlation models indicated that meteorological and hydrographic conditions explained between 31 to 65% of the variance in the drift biomass and that the best predictors of exported biomass were tidal elevation and wind speed (3 week lag). Export rates increased with high tides and strong winds and decreased with elevated water temperatures. Autocorrelations of drift biomass were generally highest at 2 week intervals, suggesting that the quantity of drift removed from the platform was, in part, related to spring and neap tide cycles. Export rates were also affected by the morphology of the vegetation, development of uprights, and location on the reef platform. Import rates of terrestrial-plant debris, the hyacinth Eichhornia, the seagrass Syringodium, and the brown alga Sargassum did not exhibit pronounced seasonal patterns in abundance and averaged 60.2, 1.9, 1.1, and 2.7 g d-1m-1, respectively. Wind speed was negatively correlated with Sargassum abundance, suggesting that strong winds depleted it from nearshore waters. Floating tar averaged about 10 g d-1m-1, the highest reported in the Caribbean. The plant-dominated fringing reef at Galeta Point is shown to be a major source, as well as a recipient, of drift vegetation.  相似文献   

13.
Macroalgal-feeding fishes are considered to be a key functional group on coral reefs due to their role in preventing phase shifts from coral to macroalgal dominance, and potentially reversing the shift should it occur. However, assessments of macroalgal herbivory using bioassay experiments are primarily from systems with relatively high coral cover. This raises the question of whether continued functionality can be ensured in degraded systems. It is clearly important to determine whether the species that remove macroalgae on coral-dominated reefs will still be present and performing significant algal removal on macroalgal-dominated reefs. We compared the identity and effectiveness of macroalgal-feeding fishes on reefs in two conditions post-disturbance—those regenerating with high live coral cover (20–46 %) and those degrading with high macroalgal cover (57–82 %). Using filmed Sargassum bioassays, we found significantly different Sargassum biomass loss between the two conditions; mean assay weight loss due to herbivory was 27.9 ± 4.9 % on coral-dominated reefs and 2.2 ± 1.1 % on reefs with high macroalgal cover. However, once standardised for the availability of macroalgae on the reefs, the rates of removal were similar between the two reef conditions (4.8 ± 4.1 g m?2 h?1 on coral-dominated and 5.3 ± 2.1 g m?2 h?1 on macroalgal-dominated reefs). Interestingly, the Sargassum-assay consumer assemblages differed between reef conditions; nominally grazing herbivores, Siganus puelloides and Chlorurus sordidus, and the browser, Siganus sutor, dominated feeding on high coral cover reefs, whereas browsing herbivores, Naso elegans, Naso unicornis, and Leptoscarus vaigiensis, prevailed on macroalgal-dominated reefs. It appeared that macroalgal density in the surrounding habitat had a strong influence on the species driving the process of macroalgal removal. This suggests that although the function of macroalgal removal may continue, the species responsible may change with context, differing between systems that are regenerating versus degrading.  相似文献   

14.
Scleractinian coral recruitment patterns were studied at depths of 9, 18, 27 and 37 m on the east and west walls of Salt River submarine canyon, St. Croix, U.S. Virgin Islands, by censusing coral juveniles which settled on experimental settling plates placed on the reef for 3–26 months as well as coral juveniles within quadrats on the reef. The most common species in the juvenile population within quadrats were Agaricia agaricites, Porites astreoides, Madracis decactis, Stephanocoenia michelinii, and A. lamarcki. The only species settling on settling plates were Agaricia spp., Madracis decactis, Porites spp., Stephanocoenia michelinii and Favia fragum. A total of 271 corals settled on 342 plates, with 51% of the juveniles on the east wall and 49% on the west wall. Of these 34% settled on horizontal surfaces and 66% on vertical surfaces. Based on results from quadrats, Agaricia agaricites and Porites astreoides had high recruitment rates relative to their abundance on the reef. In contrast, Agaricia lamarcki, Montastraea annularis, M. cavernosa and Siderastrea siderea had high amounts of cover compared to their abundance as juveniles within quadrats. The mean number of juveniles per m2 within quadrats ranged from 3 to 42. In general, there was a decrease in the mean number of juveniles and the number of species with depth. Total number of juveniles on settling plates was highest at 18 m on both walls. The largest number within quadrats was at 18 m on the east wall, followed by 9 m and 18 m on the west wall. High rates of coral recruitment tended to be associated with low algal biomass and relatively high grazing pressure by urchins and fishes.  相似文献   

15.
Disturbed coral reefs are often dominated by dense mat- or canopy-forming assemblages of macroalgae. This study investigated how such dense macroalgal assemblages change the chemical and physical microenvironment for understorey corals, and how the altered environmental conditions affect the physiological performance of corals. Field measurements were conducted on macroalgal-dominated inshore reefs in the Great Barrier Reef in quadrats with macroalgal biomass ranging from 235 to 1029 g DW m−2 dry weight. Underneath mat-forming assemblages, the mean concentration of dissolved oxygen was reduced by 26% and irradiance by 96% compared with conditions above the mat, while concentrations of dissolved organic carbon and soluble reactive phosphorous increased by 26% and 267%, respectively. The difference was significant but less pronounced under canopy-forming assemblages. Dissolved oxygen declined and dissolved inorganic carbon and alkalinity increased with increasing algal biomass underneath mat-forming but not under canopy-forming assemblages. The responses of corals to conditions similar to those found underneath algal assemblages were investigated in an aquarium experiment. Coral nubbins of the species Acropora millepora showed reduced photosynthetic yields and increased RNA/DNA ratios when exposed to conditions simulating those underneath assemblages (pre-incubating seawater with macroalgae, and shading). The magnitude of these stress responses increased with increasing proportion of pre-incubated algal water. Our study shows that mat-forming and, to a lesser extent, canopy-forming macroalgal assemblages alter the physical and chemical microenvironment sufficiently to directly and detrimentally affect the metabolism of corals, potentially impeding reef recovery from algal to coral-dominated states after disturbance. Macroalgal dominance on coral reefs therefore simultaneously represents a consequence and cause of coral reef degradation.  相似文献   

16.
The zooxanthellate mangrove jellyfish Cassiopea sp. represents a prominent invasive species and a potential bioindicator for nutrient monitoring in coral reefs. However, information about its spatial distribution in combination with abundance, habitat specificity and life cycle elements is barely available. This study, therefore, presents the results of field surveys conducted within four different benthic habitat types (coral reef, seagrass meadow, reef-sand transition and sand flat) in the Northern Red Sea. Cassiopea sp. exhibited a highly patchy distribution within the entire study area with mean abundance of 1.6 ± 0.3 animals m−2 and benthic coverage of 3.2%. Within coral reef habitats, maximum abundance of up to 31 animals m−2 and benthic coverage of up to 20% were detected. Additionally, this study revealed that 65% of all observed Cassiopea specimens were associated with the commensalistic crustacean mysid Idiomysis tsurnamali. Cassiopea abundance and size as well as association patterns with mysids differed between most of the surveyed habitats. In summary, the findings of the present study (1) characterize Cassiopea as one of the key organisms in investigated benthic habitats, (2) indicate active habitat selection by the jellyfish and (3) may hint to an unexplored life cycle of Cassiopea with central role of seagrass meadows providing cues for larval settlement and metamorphosis in the absence of mangroves.  相似文献   

17.
 The consequences of macroalgal overgrowth on reef fishes and means to reverse this condition have been little explored. An experimental reduction of macroalgae was conducted at a site in the Watamu Marine National Park in Kenya, where a documented increase in macroalgal cover has occurred over the last nine years. In four experimental 10 m by 10 m plots, macroalgae were greatly reduced (fleshy algal cover reduced by 84%) by scrubbing and shearing, while four similar plots acted as controls. The numerical abundance in all fish groups except wrasses and macroalgal-feeding parrotfishes (species in the genera Calotomus and Leptoscarus) increased in experimental algal reduction plots. Algal (Sargassum) and seagrass (Thalassia) assays, susceptible to scraping and excavating parrotfishes, were bitten more frequently in the algal reduction plots one month after the manipulation. Further, surgeonfish (Acanthurus leucosternon and A. nigrofuscus) foraging intensity increased in these algal reduction plots. The abundance of triggerfishes increased significantly in experimental plots relative to control plots, but densities remained low, and an index of sea urchin predation using tethered juvenile and adult Echinometra mathaei showed no differences between treatments following macroalgal reduction. Dominance of reefs by macrofleshy algae appears to reduce the abundance of fishes, mostly herbivores and their rates of herbivory, but also other groups such as predators of invertebrates (triggerfishes, butterflyfishes and angelfishes). Accepted: 2 February 1999  相似文献   

18.
Tsounis  G.  Steele  M. A.  Edmunds  P. J. 《Coral reefs (Online)》2020,39(5):1299-1311

Increasing abundance of arborescent octocorals (often referred to as gorgonians) on Caribbean reefs raises the question of whether habitat structure provided by octocorals can mediate a transition between coral- and algal- dominated states by increasing fish abundance and herbivory. This study tested the hypotheses that feeding rates and densities of demersal reef fishes are affected by the habitat structure provided by dense octocoral communities. Surveys of fishes on coral reefs in St John, US Virgin Islands, found 1.7-fold higher densities, and 2.4-fold higher feeding rates within versus outside of dense octocoral canopies. This difference, however, was only seen at sites with octocoral densities > 8 colonies m−2. Furthemore, the proximity of octocoral colonies to fish had an effect on the grazing rate of key herbivores (surgeonfishes and parrotfishes), with a 53% higher feeding rate (1.90 ± 0.11 bites min−1 m−2) near octocorals (< 20 or 30 cm, depending on the site) versus farther from them (1.24 ± 0.09 bites min−1 m−2). Finally, within the canopy of dense octocoral communities (17 colonies m−2), reef fishes fed at a rate that was 2.2-fold higher within the community than at the edge of the community that faced an adjacent sand patch. Fish abundance, however, was not uniformly higher within versus at the edge of the octocoral community, as ecotone specialists such as gobiids, blennioids, ostraciids, holocentrids, labrids, and pomacentrids were 1.3—2.3 times more abundant at the edge. In contrast, other taxa of demersal fishes, notably herbivores, were twice as abundant within octocoral communities than at the edges. Together, these results reveal an association between habitat structure created by octocorals on shallow reefs and increased feeding rates of demersal fishes (including those of herbivores). The potential of octocorals to increase herbivory that could mediate stony coral recovery is therefore worthy of further study.

  相似文献   

19.
Macroalgae are generally used as indicators of coral reef status; thus, understanding the drivers and mechanisms leading to increased macroalgal abundance are of critical importance. Ocean acidification (OA) due to elevated carbon dioxide (CO2) concentrations has been suggested to stimulate macroalgal growth and abundance on reefs. However, little is known about the physiological mechanisms by which reef macroalgae use CO2 from the bulk seawater for photosynthesis [i.e., (1) direct uptake of bicarbonate (HCO3 ?) and/or CO2 by means of carbon concentrating mechanisms (CCM) and (2) the diffusive uptake of CO2], which species could benefit from increased CO2 or which habitats may be more susceptible to acidification-induced algal proliferations. Here, we provide the first quantitative examination of CO2-use strategies in coral reef macroalgae and provide information on how the proportion of species and the proportional abundance of species utilising each of the carbon acquisition strategies varies across a gradient of terrestrial influence (from inshore to offshore reefs) in the Great Barrier Reef (GBR). Four macroalgal groups were identified based on their carbon uptake strategies: (1) CCM-only (HCO3 ? only users); (2) CCM-HCO3 ?/CO2 (active uptake HCO3 ? and/or CO2 use); (3) Non-CCM species (those relying on diffusive CO2 uptake); and (4) Calcifiers. δ13C values of macroalgae, confirmed by pH drift assays, show that diffusive CO2 use is more prevalent in deeper waters, possibly due to low light availability that limits activity of CCMs. Inshore shallow reefs had a higher proportion of CCM-only species, while reefs further away from terrestrial influence and exposed to better water quality had a higher number of non-CCM species than inshore and mid-shelf reefs. As non-CCM macroalgae are more responsive to increased seawater CO2 and OA, reef slopes of the outer reefs are probably the habitats most vulnerable to the impacts of OA. Our results suggest a potentially important role of carbon physiology in structuring macroalgal communities in the GBR.  相似文献   

20.

Within the complex food webs that occur on coral reefs, mesopredatory fish consume small-bodied prey and transfer accumulated biomass to other trophic levels. We estimated biomass, growth and mortality rates of three common mesopredators from Ningaloo Reef in Western Australia to calculate their annual turnover rates and potential contribution to local trophic dynamics. Biomass estimates of the serranid Epinephelus rivulatus (4.46 ± 0.76 g m−2) were an order of magnitude greater than two smaller-bodied mesopredatory fishes, Pseudochromis fuscus (0.10 ± 0.03 g m−2) and Parapercis clathrata (0.23 ± 0.31 g m−2). Growth parameters generated from a von Bertalanffy growth function fitted to size-at-age data, however, indicated that mortality rates for the three mesopredators were similar and that 32–55 % of fish survived each year. Consequently, interspecific differences in annual turnover rates among E. rivulatus (1.9 g m−2 yr−1), Pa. clathrata (0.10 g m−2 yr−1) and Ps. fuscus (0.07 g m−2 yr−1) were an artefact of differences in local biomass estimates. The rapid turnover estimates for E. rivulatus suggest this species is an important conduit of energy within the isolated patch reef habitat where it is typically found, while Ps. fuscus and Pa. clathrata channel smaller amounts of energy from specific habitats in the Ningaloo lagoon. Apparent differences in habitat, diet and turnover rates of the three species examined provide an insight into the different roles these species play in coral reef food webs and suggest that life-history traits allow for variability in the local and spatial contribution of these species at Ningaloo Reef. Moreover, calculating turnover rates of a broader suite of fish species from a range of trophic groups will help better define the role of fishes in coral reef trophic dynamics.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号