首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alternative hypotheses in higher-level marsupial systematics have different implications for marsupial origins, character evolution, and biogeography. Resolving the position of the South American monito del monte (Order Microbiotheria) is of particular importance in that alternate hypotheses posit sister-group relationships between microbiotheres and taxa with disparate temporal and geographic distributions: pediomyids; didelphids; dasyuromorphians; diprotodontians; all other australidelphians; and all other marsupials. Among Australasian marsupials, the placement of bandicoots is critical; competing views associate bandicoots with particular Australasian taxa (diprotodontians, dasyuromorphians) or outside of a clade that includes all other Australasian forms and microbiotheres. Affinities of the marsupial mole are also unclear. The mole is placed in its own order (Notoryctemorphia) and sister-group relationships have been postulated between it and each of the other Australasian orders. We investigated relationships among marsupial orders by using a data set that included mitochondrial and nuclear genes. Phylogenetic analyses provide support for the association of microbiotheres with Australasian marsupials and an association of the marsupial mole with dasyuromorphs. Statistical tests reject the association of diprotodontians and bandicoots together as well as the monophyly of Australasian marsupials. The origin of the paraphyletic Australasian marsupial fauna may be accounted for by (i) multiple entries of australidelphians into Australia or (ii) bidirectional dispersal of australidelphians between Antarctica and Australia.  相似文献   

2.
A phylogenetic analysis was carried out on rDNA of 45 species of anoplocephaline cestodes from marsupial hosts. The exclusively Australasian genera Progamotaenia Nybelin, 1917, Triplotaenia Boas, 1902, Paramoniezia Maplestone & Southwell, 1923 and Phascolotaenia Beveridge, 1976 formed a monophyletic clade, and the previously suggested relationship between the Australasian species of the cosmopolitan genus Bertiella Stiles & Hassall, 1902 and species of Progamotaenia was supported. A low degree of phyletic co-evolution was detected within endemic Australasian clades. Colonisation rather than co-speciation appeared to be the principal means of diversification within the Australasian anoplocephaline radiation. The clade of bile duct-inhabiting Progamotaenia species emphasises the role of microhabitat rather than host species as a driver of speciation. Triplotaenia undosa Beveridge, 1976 described from a wide variety of macropodid hosts was found to be polyphyletic and a proposition was made to resurrect Wallabicestus Schmidt, 1975, with W. ewersi Schmidt, 1975 as the type-species and including W. ualabati (Beveridge, 2009) n. comb. [previously Progamotaenia ualabati Beveridge, 2009].  相似文献   

3.
One of the traditional enigmas in freshwater zoogeography has been the evolutionary origin of Scleropages formosus inhabiting Southeast Asia (the Asian arowana), which is a species threatened with extinction among the highly freshwater-adapted fishes from the order Osteoglossiformes. Dispersalists have hypothesized that it originated from the recent (the Miocene or later) transmarine dispersal of morphologically quite similar Australasian arowanas across Wallace's Line, but this hypothesis has been questioned due to their remarkable adaptation to freshwater. We determined the complete nucleotide sequences of two mitochondrial protein genes from 12 osteoglossiform species, including all members of the suborder Osteoglossoidei, with which robust molecular phylogeny was constructed and divergence times were estimated. In agreement with previous morphology-based phylogenetic studies, our molecular phylogeny suggested that the osteoglossiforms diverged from a basal position of the teleostean lineage, that heterotidines (the Nile arowana and the pirarucu) form a sister group of osteoglossines (arowanas in South America, Australasia, and Southeast Asia), and that the Asian arowana is more closely related to Australasian arowanas than to South American ones. However, molecular distances between the Asian and Australasian arowanas were much larger than expected from the fact that they are classified within the same genus. By using the molecular clock of bony fishes, tested for its good performance for rather deep divergences and calibrated using some reasonable assumptions, the divergence between the Asian and Australasian arowanas was estimated to date back to the early Cretaceous. Based on the molecular and geological evidence, we propose a new model whereby the Asian arowana vicariantly diverged from the Australasian arowanas in the eastern margin of Gondwanaland and migrated into Eurasia on the Indian subcontinent or smaller continental blocks. This study also implicates the relatively long absence of osteoglossiform fossil records from the Mesozoic.  相似文献   

4.
Synopsis The ichthyofauna of the Sepik-Ramu basin is composed of diadromous species and the freshwater derivatives of marine families. Fish species diversity, ichthyomass and fish catches are low even by Australasian standards. Three major factors have produced the depauperate ichthyofauna and restricted fishery within the basin: First, the zoogeographic origins of the ichthyofauna. Australasian freshwater fishes, being mainly derived from marine families, generally exhibit ecological characteristics that have evolved for life in estuaries, not rivers. This has led to peculiarities in river fish ecology and explains the probable low fish production from rivers in this region in general. Several important riverine trophic resources are not exploited by the Australasian freshwater ichthyofauna. The modes of reproduction amongst the Australasian freshwater ichthyofauna have limited the colonisation and exploitation of floodplain habitats. Second, Sepik-Ramu lowland habitats, especially floodplains, are very young. This has resulted in low fish species diversity in lowlands, whilst diversity at higher altitudes is equable, in comparison to river systems in southern New Guinea/ northern Australia. Third, the Sepik-Ramu lacks an estuary in sharp contrast to river systems in southern New Guinea or northern Australia. Most of the 18 families of Australasian fishes missing from the Sepik-Ramu are probably absent because of this factor alone. In particular, the Sepik-Ramu has not been colonised by any family of fishes having pelagic eggs, resulting in the loss from the fauna of the few Australasian fish taxa with high reproductive rates. Consequently, the general problems with river fish ecology in Australasia are exacerbated within the Sepik-Ramu by the particular development and morphology of the basin. Fish species diversity in the Sepik-Ramu is low, even in comparison with those taxa representative of marine families resident in rivers in nearby zoogeographic regions (S.E. Asia) whose ichthyofaunas are otherwise dominated by freshwater dispersant groups. The Sepik-Ramu ichthyofauna is considered noteworthy for what is absent, not what is present. Ichthyomass and fish production can be increased by fish species introductions whilst, in theory, biodiversity of the native fish fauna can be maintained. The directions in which ecological evaluations of proposed introductions might proceed in practice for the Sepik-Ramu are discussed but are constrained by the lack of knowledge on species interactions from other areas.  相似文献   

5.
The Mucosal Immunology Special Interest Group (SIG-MI) of the Australasian Society of Immunology was formed 14 years ago and has run regular symposia and workshops in conjunction with the Australasian Society of Immunology since that time. In December 2007 the Mucosal Immunology Special Interest Group held a 1-day satellite workshop in conjunction with the annual Australasian Society of Immunology scientific meeting in Sydney to celebrate the decade since hosting the 9th International Congress of Mucosal Immunology (9-ICMI) in 1997, which was also held in Sydney. The meeting that was attended by 65 delegates focussed on 4 session themes: reproductive immunology, respiratory immunology, mucosal immunology of the gastrointestinal tract and mucosal vaccines.  相似文献   

6.
Even though marsupials are taxonomically less diverse than placentals, they exhibit comparable morphological and ecological diversity. However, much of their fossil record is thought to be missing, particularly for the Australasian groups. The more than 330 living species of marsupials are grouped into three American (Didelphimorphia, Microbiotheria, and Paucituberculata) and four Australasian (Dasyuromorphia, Diprotodontia, Notoryctemorphia, and Peramelemorphia) orders. Interordinal relationships have been investigated using a wide range of methods that have often yielded contradictory results. Much of the controversy has focused on the placement of Dromiciops gliroides (Microbiotheria). Studies either support a sister-taxon relationship to a monophyletic Australasian clade or a nested position within the Australasian radiation. Familial relationships within the Diprotodontia have also proved difficult to resolve. Here, we examine higher-level marsupial relationships using a nuclear multigene molecular data set representing all living orders. Protein-coding portions of ApoB, BRCA1, IRBP, Rag1, and vWF were analyzed using maximum parsimony, maximum likelihood, and Bayesian methods. Two different Bayesian relaxed molecular clock methods were employed to construct a timescale for marsupial evolution and estimate the unrepresented basal branch length (UBBL). Maximum likelihood and Bayesian results suggest that the root of the marsupial tree is between Didelphimorphia and all other marsupials. All methods provide strong support for the monophyly of Australidelphia. Within Australidelphia, Dromiciops is the sister-taxon to a monophyletic Australasian clade. Within the Australasian clade, Diprotodontia is the sister taxon to a Notoryctemorphia + Dasyuromorphia + Peramelemorphia clade. Within the Diprotodontia, Vombatiformes (wombat + koala) is the sister taxon to a paraphyletic possum group (Phalangeriformes) with kangaroos nested inside. Molecular dating analyses suggest Late Cretaceous/Paleocene dates for all interordinal divergences. All intraordinal divergences were placed in the mid to late Cenozoic except for the deepest splits within the Diprotodontia. Our UBBL estimates of the marsupial fossil record indicate that the South American record is approximately as complete as the Australasian record. The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
The Australasian region contains a significant proportion of worldwide Poa diversity, but the evolutionary relationships of taxa from this region are incompletely understood. Most Australasian species have been placed in a monophyletic Poa subgenus, Poa supersection Homalopoa section Brizoides clade, but with limited resolution of relationships. In this study, phylogenetic relationships were reconstructed for Australasian Poa, using three plastid (rbcL and matK genes and the rpl32‐trnL intergenic spacer) and two nuclear [internal/external transcribed spacer (ITS/ETS)] markers. Seventy‐five Poa spp. were represented (including 42 Australian, nine New Guinean, nine New Zealand and three Australian/New Zealand species). Maximum parsimony, maximum likelihood and Bayesian inference criteria were applied for phylogenetic reconstruction. Divergence dates were estimated using Bayesian inference, with a relaxed clock applied and rates sampled from an uncorrelated log‐normal distribution. Australasian Poa spp. are placed in three lineages (section Brizoides, section Parodiochloa and the ‘X clade’), each of which is closely related to non‐Australasian taxa or clades. Section Brizoides subsection Australopoa is polyphyletic as currently circumscribed. In Australasia, Poa has diversified within the last 4.3 Mya, with divergence dating results broadly congruent with fossil data that record the appearance of vegetation with a prominent grassland understorey or shrubland/grassland mosaic vegetation dating from the mid‐Pliocene. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 175 , 523–552.  相似文献   

8.
In the whole of Anemone section Rivularidium , to which the two Australasian species ( A. crassifolia and A. tenuicaulis ) belong, pollen like that of A. tenuicaulis (Cheeseman) Parkin & Sledge has been found elsewhere only in the three South American species, A. antucensis, A. helleborifolia and A. peruviana. Itseems evident, therefore, that A. tenuicaulis originated in South America. Within Anemone , the pollen of the other Australasian species, A. crassifolia Hook., resembles only that of the A. hortensis group, which is placed in another section and occurs in the Mediterranean region. The taxonomic position of A. tenuicaulis is also discussed, and it is concluded that this species occupies an isolated position in sect. Rivularidium.  相似文献   

9.
The Australasian and South American marsupial mammals, such as kangaroos and opossums, are the closest living relatives to placental mammals, having shared a common ancestor around 130 million years ago. The evolutionary relationships among the seven marsupial orders have, however, so far eluded resolution. In particular, the relationships between the four Australasian and three South American marsupial orders have been intensively debated since the South American order Microbiotheria was taxonomically moved into the group Australidelphia. Australidelphia is significantly supported by both molecular and morphological data and comprises the four Australasian marsupial orders and the South American order Microbiotheria, indicating a complex, ancient, biogeographic history of marsupials. However, the exact phylogenetic position of Microbiotheria within Australidelphia has yet to be resolved using either sequence or morphological data analysis. Here, we provide evidence from newly established and virtually homoplasy-free retroposon insertion markers for the basal relationships among marsupial orders. Fifty-three phylogenetically informative markers were retrieved after in silico and experimental screening of ∼217,000 retroposon-containing loci from opossum and kangaroo. The four Australasian orders share a single origin with Microbiotheria as their closest sister group, supporting a clear divergence between South American and Australasian marsupials. In addition, the new data place the South American opossums (Didelphimorphia) as the first branch of the marsupial tree. The exhaustive computational and experimental evidence provides important insight into the evolution of retroposable elements in the marsupial genome. Placing the retroposon insertion pattern in a paleobiogeographic context indicates a single marsupial migration from South America to Australia. The now firmly established phylogeny can be used to determine the direction of genomic changes and morphological transitions within marsupials.  相似文献   

10.
A key to males of the Australasian and Oriental species of Dohrniphora is provided. Twenty-five new species are described and two new synonyms proposed.  相似文献   

11.
Winterton SL 《ZooKeys》2012,(172):7-75
The Australasian spider flies (Diptera: Acroceridae) are reviewed, with all eight currently recognized genera diagnosed and figured. The panopine genus Panops Lamarck, 1804 from Australia and Indonesia is revised with four new species described, increasing the total number of species in the genus to nine: Panops aurumsp. n., Panops danielsisp. n., Panops jadesp. n. and Panops schlingerisp. n. Five species of Panops are redescribed: Panops austrae Neboiss, 1971, Panops baudini Lamarck, 1804, Panops boharti (Schlinger, 1959), comb. n., Panops conspicuus (Brunetti, 1926) and Panops grossi (Neboiss, 1971), comb. n. The monotypic genera Neopanops Schlinger, 1959 and Panocalda Neboiss, 1971 are synonymized with Panops. Keys to genera of Australasian Acroceridae and species of Panops, Helle Osten Sacken, 1896 and Australasian Pterodontia Gray, 1832 are included.  相似文献   

12.
A key to males of the Australasian and Oriental species of Dohrniphora is provided. Twenty-five new species are described and two new synonyms proposed.  相似文献   

13.
The European earwig, Forficula auricularia, is a cosmopolitan insect endemic to Europe, West Asia and North Africa, which has invaded many temperate regions of the world including Australia and New Zealand. F. auricularia has been shown to be a complex of morphologically identical, reproductively isolated lineages that possess two distinct clades of mitochondrial DNA. Entomological collection data, historical literature and further field collections were used to develop a greater understanding of Australian F. auricularia’s invasion biology and its current distribution. Genetic analysis of F. auricularia collected from Australia and New Zealand using two mitochondrial genes (COI and a fragment overlapping parts of the COI -COII genes) was also undertaken. To identify the possible source populations of the Australasian invasion these sequences were compared to those from 16 locations within Britain and continental Europe. All Australasian populations were shown to be of the clade B lineage. Tasmanian and New Zealand populations consist of a single subclade comprised of only 4 and 1 haplotypes respectively. The Australian mainland populations also contained a second subclade consisting of up to 11 haplotypes indicating that multiple introductions possibly occurred on the Australian mainland. Comparison of mitochondrial genomes from Australasian and European populations showed the Australian mainland subclade to be most closely related to Portuguese haplotypes, and the Tasmanian and New Zealand clade closely related to those in Brittany, France. No European haplotypes perfectly matched the Australasian sequences. Therefore, the original source populations are still to be identified with harbours on the Iberian Peninsula’s western coast and those on the English Channel likely candidate areas.  相似文献   

14.
A new valenciniid heteronemertean, Valencinina albula , gen. et sp. nov. from the Great Barrier Reef province of Australia, is described and illustrated. This is the first record of a valenciniid from Australasian waters.  相似文献   

15.
A novel alphavirus was isolated from the louse Lepidophthirus macrorhini, collected from southern elephant seals, Mirounga leonina, on Macquarie Island, Australia. The virus displayed classic alphavirus ultrastructure and appeared to be serologically different from known Australasian alphaviruses. Nearly all Macquarie Island elephant seals tested had neutralizing antibodies against the virus, but no virus-associated pathology has been identified. Antarctic Division personnel who have worked extensively with elephant seals showed no serological evidence of exposure to the virus. Sequence analysis illustrated that the southern elephant seal (SES) virus segregates with the Semliki Forest group of Australasian alphaviruses. Phylogenetic analysis of known alphaviruses suggests that alphaviruses might be grouped according to their enzootic vertebrate host class. The SES virus represents the first arbovirus of marine mammals and illustrates that alphaviruses can inhabit Antarctica and that alphaviruses can be transmitted by lice.  相似文献   

16.
Abstract.  We examined the inter- and infrageneric relationships of Old World Meliponini with a near-complete sampling of supra-specific taxa. DNA sequences for the taxa were collected from four genes (mitochondrial 16S rRNA, nuclear long-wavelength rhodopsin copy 1 (opsin), elongation factor-1α copy F2 and arginine kinase). Additional sampling of New World taxa indicated that Trigona sensu lato is not monophyletic: Trigona from the Indo-Malayan/Australasian Regions forms a large clade distantly related to the Neotropical Trigona . A separate clade comprises the Afrotropical meliponines, and includes the 'minute' species found in the Afrotropical, Indo-Malayan and Australasian Regions. The Neotropical genus Melipona , by contrast with previous investigations, is not the sister lineage to the remaining stingless bees, but falls within the strongly supported Neotropical clade. These results constitute the framework for a revised classification and ongoing biological investigations of Meliponini. A single taxonomic change, Heterotrigona bakeri stat.n. , is proposed on the basis of sequence divergence.  相似文献   

17.
I herein revise the genus Toxopoda Macquart of the Oriental and Australasian regions. A total of 16 species is discussed. Six new species are described: T. cavata sp. nov., T. angulata sp. nov., T. elephantina sp. nov., T. zuskai sp. nov., T. malayana sp. nov., and T. ozerovi sp. nov. The species T. contracta (Walker), T. viduata (Thomson) and T. simplex Iwasa, which can be easily confused with other species, are correctly redescribed and illustrated. Distributional notes and a key to the species of the Oriental and Australasian regions are provided.  相似文献   

18.
Morphological and molecular data yield incongruent hypotheses concerning the interrelationships of chelid side-necked turtles, neither of which is widely accepted. Molecular studies recognize monophyletic South American and Australasian clades, whereas morphological characters distinguish a long-necked clade and a short-necked clade. We take a developmental approach to exploring chelid interrelationships. None of the nine species studied have the same growth pattern for all measurements examined, indicating changes in ontogenetic scaling of cranial characters was common during chelid evolution. The variability in scaling relationships precludes overwhelming support for either hypothesis. Scaling patterns are most similar between the geographically separate clades promoted by molecular analyses, and hence our data favor an independent origin of the long neck in South American and Australasian species. A close relationship between Hydromedusa and Chelus, rather than Chelodina, is supported by scaling patterns associated with a relative widening of the cranium. Our study exemplifies the utility of comparative ontogenetic trajectory data to test phylogenetic hypotheses.  相似文献   

19.
The Australasian marsupial order Diprotodontia includes ten extant families that are grouped into the suborders Vombatiformes (koalas and wombats), Macropodiformes (kangaroos and allies), and Phalangeriformes (possums and gliders). We investigated interfamilial relationships using mitochondrial 12S rRNA, valine tRNA, and 16S rRNA gene sequences. Our results support the monophyly of both Vombatiformes and Macropodiformes, but not Phalangeriformes. Among possums and gliders, there was strong support for a petauroid clade that includes Pseudocheiridae (ringtail possums), Petauridae (sugar glider, striped possums), Acrobatidae (feathertail possums), and the monotypic family Tarsipedidae, which is represented by the highly specialized and autapomorphic honey possum (Tarsipes rostratus). Other prior hypotheses for the phylogenetic placement of the honey possum were rejected by statistical tests. The inclusion of the honey possum within Petauroidea suggests that derived ultrastructural features of Tarsipes' spermatozoa evolved independently in Tarsipes versus polyprotodont Australasian marsupials.  相似文献   

20.
Comparisons of the flavonoid patterns in stems and inflorescences between Australasian and South African members of the Restionaceae indicate significant differences with geography. Nine of 14 Australasian species contain gossypetin or a related 8-hydroxyflavonoid and proanthocyanidins are uncommon. By contrast, the 33 South African taxa studied contain common flavonols, flavones and glycoflavones, while proanthocyanidins are present in 29. Two anatomically related South African genera, Chondropetalum and Elegia, contain, in addition, myricetin 3-galactoside, together with the 3-galactosides of the myricetin methyl ethers, larycitrin and syringetin. These results confirm the conclusions derived from anatomy that members of Hypolaena, Leptocarpus and Restio, genera represented in both Australia and South Africa, have the distinctive flavonoids characteristic of their geographic origin rather than of their systematic position. The family as a whole is different in flavonoid pattern from other monocotyledonous families with which it is sometimes associated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号